Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AI/ Slam Architect

Heatly
Leeds
8 months ago
Applications closed

Related Jobs

View all jobs

Computer Vision Engineer

Senior Computer Vision Engineer

Computer Vision Scientist (Multimodal Sensing)

Staff Computer Vision Engineer

Senior Computer Vision Engineer - UK

Computer Vision Engineer

Job Description

We are seeking a versatile and skilled AI/SLAM (Simultaneous Localization and Mapping) Architect. The ideal candidate will be responsible for, and take ownership of applying advanced machine learning techniques, computer vision, and hardware technologies to create and optimize SLAM algorithms. More specifically it will be to enhance, and extend and implement image recognition/training pipelines, visual positioning systems and to liaise with the wider technical team regarding their implementation into a real-world application.

This is a hands-on role.

Key Responsibilities

AI/ML/SLAM Algorithm Development:

o Enhance our Prototype: Enhance and extend our functional prototype into a robust SLAM system ready for deployment in real-world applications.

o Develop machine learning models: Develop solutions to enhance our SLAM accuracy, robustness, and efficiency.

o Sensor Data Processing: Work with sensors such as WebXR, LiDAR, cameras, IMUs, and GPS to process data and enable real-time mapping and localization.

o Determine appropriate technology/technique usage: Implement and improve 2D, 3D, and visual SLAM techniques.

o Deep Learning: Experiment with deep learning frameworks to improve SLAM performance in dynamic and unstructured environments.

o Identify and resolve defects: Work closely with the business to identify, to identify and optimise our solutions.

o Ensure security by design: Integrate security/privacy best practices into the learning process to ensure that approaches are secure and responsible from the ground up.

o Optimise for performance and scalability: Design and implement solutions that can dynamically scale to meet varying demands and ensure high performance and availability. Use profiling tools to identify performance bottlenecks and optimise code accordingly.

 

Agile Development:

o Agile Focus: Contribute to an Agile development environment, participating in sprint planning, daily stand-ups, and retrospectives. Work collaboratively to refine requirements, estimate tasks, and deliver high-quality solutions efficiently.

 

Qualifications

· Education:

o Bachelor’s degree in Computer Science, AI/ML, Maths or related field (Master’s or Ph.D. preferred).

· Experience:

o Proven experience in developing and deploying SLAM algorithms in a relevant industry

o Strong understanding of machine learning, computer vision, and sensor fusion techniques.

o Experience working on mission-critical or SaaS services

· Technical Skills:

o Appropriate technological experience with Python, Pipelines, Cloud Computing and CLI fundamentals

o Experience with GPU programming and optimizing for real-time performance.

o Experience of mobile device hardware capabilities, specifically related to the camera(s) and geo services.

· Soft Skills:

o Excellent problem-solving and analytical skills.

o Strong communication and collaboration abilities.

o Ability to work in a fast-paced, dynamic environment and manage multiple priorities.

o Attention to detail and a proactive approach to identifying and addressing issues.


Array

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.