2026 Graduate Machine Learning Engineer - Applied AI

Graphcore
Cambridge
3 days ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer/Researcher - 2026 Graduate Programme

Machine Learning Engineer (0–3 Years Experience)

On-site Machine Learning Engineer Consultant — Cambridge

Artificial Intelligence and Machine Learning Graduate

Graduate Data Scientist

Artificial Intelligence Engineer

Cambridge, UK


About us

Graphcore is one of the world’s leading innovators in Artificial Intelligence compute.


It is developing hardware, software and systems infrastructure that will unlock the next generation of AI breakthroughs and power the widespread adoption of AI solutions across every industry.


As part of the SoftBank Group, Graphcore is a member of an elite family of companies responsible for some of the world’s most transformative technologies. Together, they share a bold vision: to enable Artificial Super Intelligence and ensure its benefits are accessible to everyone.


Graphcore’s teams are drawn from diverse backgrounds and bring a broad range of skills and perspectives. A melting pot of AI research specialists, silicon designers, software engineers and systems architects, Graphcore enjoys a culture of continuous learning and constant innovation.


Job Summary

As a Graduate Machine Learning Engineer in the Applied AI team at Graphcore, you will contribute to advancing AI technology by developing and optimising AI models tailored to our specialised hardware. Working closely with the Software development and Research teams, you will play a critical role in identifying opportunities to innovate and differentiate Graphcore’s technology. This role is ideal for someone who loves working hands‑on with models, has a strong foundation in ML fundamentals, and wants to push the boundaries of AI performance in real-world systems.


The Team

The Applied AI team’s role is to understand the latest AI models, applications, and software to ensure that Graphcore’s technology works seamlessly with the AI ecosystem. We build reference applications, contribute to key software libraries e.g. optimising kernels for efficiency on our hardware, and collaborate with the Research team to develop and publish novel ideas in domains such as efficient compute, model scaling and distributed training and inference of AI models for different modalities and applications.


Responsibilities and Duties

  • Implement state‑of‑the‑art machine learning models and optimise them for performance and accuracy, scaling to 1000s of accelerators.
  • Evaluate new software releases, provide feedback to software engineering teams, make necessary code fixes, and conduct code reviews.
  • Benchmark models and key model components to identify performance bottlenecks and improve model efficiency.
  • Design and conduct experiments on novel AI methods, analyse and report results clearly.
  • Collaborate with Research, Software, and Product teams to define, build, and test Graphcore’s next generation of AI hardware.
  • Stay current with AI research and actively engage with the broader AI and open-source community.

Candidate Profile

  • Bachelor’s/Master’s degree in Machine Learning, Computer Science, Maths, Data Science, or related field.
  • Proficiency in deep learning frameworks such as PyTorch/JAX and strong software development skills.
  • Solid understanding of deep learning fundamentals — architectures, optimisation, evaluation, and scaling.
  • Capable of designing, executing and reporting from ML experiments.
  • Comfortable working in a fast‑moving, occasionally ambiguous environment.
  • Enjoy cross‑functional work collaborating with other teams.

Experience in one or more of:



  • Development of deep learning models including large generative models for language, vision and other modalities;
  • Distributed training of large‑scale ML models.
  • Experience writing high performance C++/Triton/CUDA kernels.
  • Contributions to open‑source projects or published research.
  • Familiarity with cloud platforms and ML infrastructure.
  • Enthusiasm for presenting, publishing, or engaging in the AI community.

In addition to a competitive salary, Graphcore offers flexible working, a generous annual leave policy, private medical insurance and health cash plan, a dental plan, pension (matched up to 5%), life assurance and income protection. We have a generous parental leave policy and an employee assistance programme (which includes health, mental wellbeing, and bereavement support). We offer a range of healthy food and snacks at our central Bristol office and have our own barista bar! We welcome people of different backgrounds and experiences; we’re committed to building an inclusive work environment that makes Graphcore a great home for everyone. We offer an equal opportunity process and understand that there are visible and invisible differences in all of us. We can provide a flexible approach to interview and encourage you to chat to us if you require any reasonable adjustments.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.