▷ Urgent! Sr. Data Scientist / Machine Learning Engineer -GenAI & LLM

Databricks Inc.
London
22 hours ago
Create job alert

The Machine Learning (ML) Practice team is a highlyspecialized customer-facing ML team at Databricks facing anincreasing demand for Large Language Model (LLM)-based solutions.We deliver professional services engagements to help our customersbuild, scale, and optimize ML pipelines, as well as put thosepipelines into production. We work cross-functionally to shapelong-term strategic priorities and initiatives alongsideengineering, product, and developer relations, as well as supportinternal subject matter expert (SME) teams. We view our team as anensemble: we look for individuals with strong, uniquespecializations to improve the overall strength of the team. Thisteam is the right fit for you if you love working with customers,teammates, and fueling your curiosity for the latest trends inLLMs, MLOps, and ML more broadly. The impact you will have: -Develop LLM solutions on customer data such as RAG architectures onenterprise knowledge repos, querying structured data with naturallanguage, and content generation - Build, scale, and optimizecustomer data science workloads and apply best in class MLOps toproductionize these workloads across a variety of domains - Advisedata teams on various data science such as architecture, tooling,and best practices - Present at conferences such as Data+AI Summit- Provide technical mentorship to the larger ML SME community inDatabricks - Collaborate cross-functionally with the product andengineering teams to define priorities and influence the productroadmap What we look for: - Experience building Generative AIapplications, including RAG, agents, text2sql, fine-tuning, anddeploying LLMs, with tools such as HuggingFace, Langchain, andOpenAI - Extensive hands-on industry data science experience,leveraging typical machine learning and data science toolsincluding pandas, scikit-learn, and TensorFlow/PyTorch - Experiencebuilding production-grade machine learning deployments on AWS,Azure, or GCP - Experience communicating and/or teaching technicalconcepts to non-technical and technical audiences alike - Passionfor collaboration, life-long learning, and driving business valuethrough ML - [Preferred] Experience working with Databricks &Apache Spark to process large-scale distributed datasets AboutDatabricks Databricks is the data and AI company. More than 10,000organizations worldwide — including Comcast, Condé Nast, Grammarly,and over 50% of the Fortune 500 — rely on the Databricks DataIntelligence Platform to unify and democratize data, analytics andAI. Databricks is headquartered in San Francisco, with officesaround the globe and was founded by the original creators ofLakehouse, Apache Spark, Delta Lake and MLflow. To learn more,follow Databricks on Twitter ,LinkedIn and Facebook . Benefits AtDatabricks, we strive to provide comprehensive benefits and perksthat meet the needs of all of our employees. For specific detailson the benefits offered in your region, pleasevisithttps://www.mybenefitsnow.com/databricks . Our Commitment toDiversity and Inclusion At Databricks, we are committed tofostering a diverse and inclusive culture where everyone can excel.We take great care to ensure that our hiring practices areinclusive and meet equal employment opportunity standards.Individuals looking for employment at Databricks are consideredwithout regard to age, color, disability, ethnicity, family ormarital status, gender identity or expression, language, nationalorigin, physical and mental ability, political affiliation, race,religion, sexual orientation, socio-economic status, veteranstatus, and other protected characteristics. Compliance If accessto export-controlled technology or source code is required forperformance of job duties, it is within Employer's discretionwhether to apply for a U.S. government license for such positions,and Employer may decline to proceed with an applicant on this basisalone. #J-18808-Ljbffr

Related Jobs

View all jobs

▷ (Urgent Search) Senior Data Scientist - Middle Mile &Pitstops

▷ (Urgent) Snr Data Scientist - GenAI

▷ [15h Left] Staff Data Scientist Data and Insights ·London

▷ 3 Days Left! Data Scientist

▷ Apply Now: Data Scientist/Business Analyst – PrivateEquity

▷ Only 24h Left! Patent Attorney, AI and Machine Learning -UK based

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.