Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Technical Project Lead - Azure DevOps

Certes
Coleshill
1 year ago
Applications closed

Related Jobs

View all jobs

Project Lead - Data Science & MMM

Senior Data Scientist

Principal Data Scientist

Data Scientist - Hybrid

Group FSR Analyst

Senior Data Scientist

Responsibilities

Azure Platform Engineering: Lead the design, provisioning, and optimization of the Azure cloud platform for data analytics and AI/ML workflows, with a focus on scalability, resilience, and high availability.Infrastructure as Code (IaC): Implement and manage Infrastructure as Code using Terraform to automate the deployment and configuration of Azure resources for efficiency and repeatability.Azure DevOps Integration: Manage and optimize CI/CD pipelines using Azure DevOps to deploy platform updates and infrastructure changes across environments seamlessly.Cloud Resource Management: Optimize the performance, cost, and availability of cloud resources including virtual machines, storage solutions, networking, and identity management.Collaboration with Data Teams: Work closely with data engineers, AI/ML specialists, and analysts to ensure the Azure platform supports their requirements without direct involvement in coding or data pipeline development.Security and Compliance: Implement best practices for security, governance, and compliance across Azure services, ensuring adherence to GDPR and other relevant regulations.Monitoring and Performance Tuning: Establish robust monitoring, logging, and alerting systems using Azure Monitor, Log Analytics, and other tools to ensure platform health and performance.Collaboration with Project Managers: Assist project managers by providing technical insights and support in the planning and execution of infrastructure-related components of data analytics initiatives.

Qualifications

Expertise in Azure Platform Engineering: Extensive experience in designing and managing Azure-based platforms for large-scale data analytics, AI, and machine learning applications.Infrastructure Automation (Terraform): Hands-on experience using Terraform to automate the provisioning, scaling, and management of Azure resources.Azure DevOps: Experience managing CI/CD pipelines for infrastructure updates, automation, and operational workflows using Azure DevOps.Cloud Resource Optimization: Proven ability to optimize Azure resources for cost, performance, and availability, including managing compute, storage, and networking resources.Security and Compliance: Strong understanding of Azure security best practices, identity and access management, encryption, and compliance frameworks such as GDPR.Platform Monitoring: Proficiency in setting up and managing monitoring solutions like Azure Monitor, Log Analytics, and Application Insights to ensure platform stability and performance.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.