Technical Project Lead - Azure DevOps

Certes
Coleshill
7 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist - NLP

Principal Data Scientist - NLP

Data Scientist

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Responsibilities

Azure Platform Engineering: Lead the design, provisioning, and optimization of the Azure cloud platform for data analytics and AI/ML workflows, with a focus on scalability, resilience, and high availability.Infrastructure as Code (IaC): Implement and manage Infrastructure as Code using Terraform to automate the deployment and configuration of Azure resources for efficiency and repeatability.Azure DevOps Integration: Manage and optimize CI/CD pipelines using Azure DevOps to deploy platform updates and infrastructure changes across environments seamlessly.Cloud Resource Management: Optimize the performance, cost, and availability of cloud resources including virtual machines, storage solutions, networking, and identity management.Collaboration with Data Teams: Work closely with data engineers, AI/ML specialists, and analysts to ensure the Azure platform supports their requirements without direct involvement in coding or data pipeline development.Security and Compliance: Implement best practices for security, governance, and compliance across Azure services, ensuring adherence to GDPR and other relevant regulations.Monitoring and Performance Tuning: Establish robust monitoring, logging, and alerting systems using Azure Monitor, Log Analytics, and other tools to ensure platform health and performance.Collaboration with Project Managers: Assist project managers by providing technical insights and support in the planning and execution of infrastructure-related components of data analytics initiatives.

Qualifications

Expertise in Azure Platform Engineering: Extensive experience in designing and managing Azure-based platforms for large-scale data analytics, AI, and machine learning applications.Infrastructure Automation (Terraform): Hands-on experience using Terraform to automate the provisioning, scaling, and management of Azure resources.Azure DevOps: Experience managing CI/CD pipelines for infrastructure updates, automation, and operational workflows using Azure DevOps.Cloud Resource Optimization: Proven ability to optimize Azure resources for cost, performance, and availability, including managing compute, storage, and networking resources.Security and Compliance: Strong understanding of Azure security best practices, identity and access management, encryption, and compliance frameworks such as GDPR.Platform Monitoring: Proficiency in setting up and managing monitoring solutions like Azure Monitor, Log Analytics, and Application Insights to ensure platform stability and performance.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.

Contract vs Permanent AI Jobs: Which Pays Better in 2025?

n the ever-evolving world of technology, the competition for top talent in artificial intelligence (AI) is intense—and the rewards are significant. By 2025, AI roles in machine learning, natural language processing, data science, and robotics are expected to be among the highest-paid professions within the UK technology sector. As an AI professional, deciding between contracting (either as a day‑rate contractor or via fixed-term contracts) and permanent employment could drastically impact your take‑home pay, job security, and career trajectory. In this article, we will delve into the various types of AI roles in 2025—particularly focusing on day‑rate contracting, fixed-term contract (FTC) roles, and permanent positions. We will compare the earning potential across these three employment types, discuss the key pros and cons, and provide practical examples of how your annual take‑home pay might differ under each scenario. Whether you are already working in AI or looking to break into this booming field, understanding these employment options will help you make an informed decision on your next move.