Technical Engineer

Belfast
3 weeks ago
Create job alert

Technical Engineer – customer facing role so need to be in Belfast office a few days a week.
Do you want to join a high-growth, dynamic tech business that is impacting real-world issues with its innovative products?
The company
This company are primarily data driven with domain expertise delivering insights to networks and assets using analytics, presentation, machine learning and AI that is SAAS and cloud based services.
The Role:
Working as a Technical Customer Delivery Engineer with and as part of the internal customer development and delivery team, help enhance the success of our customer deployments and product utilisation. You will do this in both a proactive and reactive mode, where internally we work to enhance and address any potential problems and also to respond to customer queries or issues as they are raised.
This is a technical role, requiring good teamwork and communication skills working across internal development and delivery teams, customer account management, and our customers. You will need to be able to articulate status in terms of delivery of support to customers, and also what is required from other teams to help you make your role successful.
The work is mainly helping customers successfully utilise the product in guiding them to grow their supported network elements, make changes/updates/enhancements to existing configurations, and helping fix/address issues when they occur.
Responsibilities:
AWS Infrastructure Management:

  • Design, implement, and manage AWS cloud infrastructure.
  • Optimise AWS resources to ensure cost-effective and scalable solutions.
  • Monitor and maintain AWS services including EC2, S3, RDS, Lambda, and more.
    Deployment and Release Management:
  • Develop and maintain automated deployment scripts.
  • Ensure smooth and efficient deployment processes.
  • Troubleshoot and resolve deployment issues in a timely manner.
    Containerisation:
  • Implement and manage container orchestration platforms such as Kubernetes, Docker EBS.
  • Ensure containerized applications are secure, scalable, and efficiently managed.
    CI/CD Pipeline Management:
  • Design, implement, and manage CI/CD pipelines using tools such as Jenkins, GitLab, Bitbucket
  • Ensure efficient and reliable build, test, and deployment processes.
  • Collaborate with development teams to improve CI/CD practices.
    Monitoring and Performance Optimisation:
  • Implement monitoring tools and practices to ensure the reliability and performance of infrastructure and applications.
  • Identify and resolve performance bottlenecks and system failures.
    Collaboration and Support:
  • Work closely with development, QA to support their infrastructure and deployment needs.
  • Provide technical guidance and support to team members and stakeholders.
    Testing Automation:
  • Develop and implement automated testing frameworks .
  • Work with development teams to integrate automated tests into the CI/CD pipeline.
  • Ensure high test coverage and reliable test results.
    Essential Criteria:
  • Degree level education in a relevant discipline or equivalent experience
  • Ideally 4 years development/delivery experience and 12 months experience in a DevOps role or a developer role involving significant DevOps responsibilities
  • Experienced in at least one of the main cloud technologies – AWS, Azure, RedHat, GCP, IBM Cloud
  • Strong working knowledge of Linux
  • Experience of building and implementing CI/CD pipelines including working with repos, build automation tools, build orchestration and environment automation. e.g. Jenkins, GitHub, GitLab, CloudFormation, Others
  • Experience in implementing tools for logging, monitoring and alerting. e.g. Prometheus, Splunk, CloudWatch, Nagios
  • Experience in creating and automating virtual machines in public and private clouds
  • An understanding or experience of high availability, business continuity and disaster recovery solutions in the cloud
    Benefits:
    Great salary
    Private medical and dental insurance
    24 days annual leave
    Additional day off for birthday
    Enhanced maternity / paternity package
    Hybrid working
    Free parking at office
    Share Options

Related Jobs

View all jobs

Data Engineer

Principal Software Engineer

Head of Data Science & Applied AI

Head of Data Science & Applied AI New Remote, UK

Lead Enterprise Architect, Advanced Analytics

Senior Director Artificial Intelligence/Machine Learning

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.