Systems Engineer (Modelling & Simulation)

Eclectic Recruitment
Stevenage
1 year ago
Applications closed

Related Jobs

View all jobs

KTP Associate - Machine Learning and Vision Systems Engineer

Senior Computer Vision Engineer

Data Scientist: Graph Database & Ontology Specialist

Software Engineer, Applied Artificial Intelligence (AI)

Software Engineer, Applied Artificial Intelligence (AI)

MLOps Engineer

We are delighted to be working with this cutting-edge technology company in their pursuit of a Systems Engineer (Modelling and Simulation) to join their team on a full time, permanent basis in Stevenage.The role offers an excellent benefits package including company bonus, flexitime, hybrid working and some great opportunities for career progression.This role requires Security Clearance and applicants are therefore required to be a British Citizen or Dual UK National (including British Citizenship).Key responsibilities will include: * Modelling and coding * Algorithm development * Data analysis and Technical report writingThe successful candidate will have: * Proficiency in MATLAB and development of models in Simulink * Formal software or firmware development experience * Knowledge of RF systems and digital signal processing * Model verification, configuration control and model release processes * Continuous Integration and Testing * Machine Learning and AI experience * British Citizen or Dual UK National (including British Citizenship)If this role looks like your next challenge, please contact Keelan ASAP or apply via this advert!We endeavour to reply to every candidate, every time but if you haven’t heard back within 10 days, please understand that you have unfortunately been unsuccessful for this position, or the position has been filled. Please call the office or send an email to discuss other potential positions

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.