Sustainability Data Engineer

St James's Square
1 month ago
Applications closed

Related Jobs

View all jobs

Director of Data Intelligence

Software Engineer

Lead Mobile Engineer

Digital and IT Intern- Machine Learning

LLM Engineer - Technical Intelligence

Lead Engineer – Enterprise AI 

Remote Role – Central London Office
   
Sustainability Data Engineer

The Organisation

We develop cutting-edge navigator software for the global agricultural sector, helping farmers transition toward more sustainable practices through science-backed analytics. Our software provides direct access to advanced sustainability models and insights.

Our Sustainability division consists of specialised Research Software Engineers who transform scientific findings into practical models for farmers and land managers, enabling them to understand their systems better and build more sustainable, profitable operations.

Position Overview

We're seeking an experienced Data Engineer to join our Sustainability team as the lead technical specialist in our R-focused Research Software Engineering group. You'll create and maintain the technical infrastructure that enables our sustainability experts and data scientists to develop innovative agricultural sustainability solutions.

Core Functions
Lead technical best practices across R package design, code architecture, documentation, and dependency management
Establish and oversee versioning and CI/CD systems to enhance team workflows
Guide team members in code architecture, development standards, and deployment processes
Serve as the technical authority for computationally demanding tasks, especially spatial analytics and GIS-based product development
Implement scientific research findings into production-ready code
Collaborate with our Engineering department to align code design, versioning strategies, and release cycles Essential Qualifications
Master's degree or equivalent in informatics or life sciences (or bachelor's degree with 5+ years relevant industry experience)
Deep knowledge of R programming and package development
Proven experience managing dependencies and ensuring reproducibility in R production environments
Strong background in version control systems and CI/CD implementation
History of successful collaboration with IT teams on data science workflows
Proficiency with Windows and/or Linux environments
Experience with GIS systems and spatial data analysis
Exceptional problem-solving abilities and adaptability
Leadership experience with strong communication skills
Structured approach to quantitative challenges
Comfort working in a dynamic startup environment Qualifications
Microsoft Azure experience, particularly R integration
Application containerization knowledge (Docker, etc.)
Familiarity with Python, JavaScript, C++, bash, or other languages
Web application development experience (React, .NET)
Background in data security and IP protection workflows
Knowledge of environmental sustainability concepts (carbon footprinting, lifecycle analysis, environmental modeling)
Experience in agricultural or land management sectors If you are based in the UK and meet the criteria listed then apply now!  The Morris Sinclair team will give you a call

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.