Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Statistics Specialist

NIIT
Liverpool
10 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist - Ad Campaign Performance

data scientist

Assistant Coastal Data Scientist

Assistant Coastal Data Scientist

Assistant Coastal Data Scientist (Undergraduate)

About the company:


NIIT is a leading Skills and Talent Development Corporation that is building a manpower pool for global industry requirements. The company, which was set up in 1981 to help the nascent IT industry overcome its human resource challenges, today ranks among the world’s leading training companies owing to its vast, yet comprehensive array of talent development programs. With a footprint across 40 nations, NIIT offers training and development solutions to Individuals, Enterprises, and Institutions.


Link for our LinkedIn page:https://www.linkedin.com/company/niitmts/mycompany/


Link for our website: https://www.niit.com/en/learning-outsourcing/


Position: Statistical Trainer

Location: Europe (Remote)

Job type: Freelance contract



At least 3 years experience in developing (program, training material, contents) training courses or participating in the provision of training courses.

Must have a level of education that corresponds to completed university studies attested by a diploma when the normal period of university education is four years or more.

Must have a minimum of 3 years working experience or a PhD in statistics, economy or an equivalent domain, relevant for the statistical field(s) for which he/she is proposed. A Master degree from an EMOS labelled university (or equivalent) counts as up to two years of working experience.



Statistical methods and tools in production and innovation management in official statistics:


Statistical fields:


• European Statistical System (ESS) – Introduction, organization and governance, legal

framework

• Enterprise Architecture (EA) for official statistics

• Design of statistical processes including data collection

• Data integration, validation, editing and imputation

• Estimation, time series analysis, seasonal adjustment

• Econometrics

• Data ethics and privacy

• Methods for input privacy (privacy enhancing technologies)

• Methods for output privacy (Statistical disclosure control and confidentiality)

• Geospatial information in statistics

• Information standards and technologies for describing, exchanging and disseminating

data and metadata

• Statistical classifications

• Data Quality and Quality reporting

• Big data sources, tools and Trusted Smart Statistics

• Data engineering

• Big data analytics

• Processing of large structured, unstructured, (close to) real time, and sensor data

• Artificial intelligence, machine learning, Bayesian inference, statistical modelling

• Languages for statistical computing and graphics

• Visualization and communication with statistics

• Publication and dissemination

• Relation with Media

• Skills enhancement and training

• Project, Programmed and Portfolio Management

• Data stewardship

• Relation with stakeholders

• Innovation and change management

• Data science skills for the next generation of statisticians

• Sampling

• Web scraping and online/smart data

Sectoral and Regional statistics


Statistical fields:


• Environmental economic accounts

• Agriculture and fisheries

• Transport

• Energy

• Waste statistics

• Water statistics

• Statistical cartography

• Environmental statistics and accounts; sustainable development

• Regional statistics and geographical information

Macro-economics, Social and Business statistics


Statistical fields:


• National Accounts

• Balance of Payments statistics

• Theory and practice of Harmonised Indices of Consumer Prices (HICP)

• Innovative data collection in Social Statistics

• Business statistics

• Business registers/EuroGroups register

• Financial information analysis to support business statistics

• Demography, Population and migration

• Labour Market


NIIT is an equal-opportunity employer. We evaluate qualified applicants without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, or any other protected characteristic.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.