Staff Software Engineer, Machine learning Performance

Google
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Staff Engineer (Machine Learning) - 45391

Senior Staff Engineer (Machine Learning) - 45391

Data Scientist/ Software Engineer

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Senior Machine Learning Engineer

ML Engineer / Data Scientist

Minimum qualifications: Bachelor's degree or equivalent practical experience. 8 years of experience in software development, and with data structures/algorithms. 5 years of experience testing, and launching software products, and 3 years of experience with software design and architecture. 5 years of experience with machine learning algorithms and tools (e.g., TensorFlow), artificial intelligence, deep learning, or natural language processing. Preferred qualifications: Experience in performance analysis and optimization, including system architecture, performance modeling, or similar. Experience working in a complex, matrixed organization involving cross-functional, or cross-business projects. Experience in a technical leadership role leading project teams and setting technical direction. Experience in distributed development and large-scale data processing. Experience in compiler optimizations or related fields. About the job Google's software engineers develop the next-generation technologies that change how billions of users connect, explore, and interact with information and one another. Our products need to handle information at massive scale, and extend well beyond web search. We're looking for engineers who bring fresh ideas from all areas, including information retrieval, distributed computing, large-scale system design, networking and data storage, security, artificial intelligence, natural language processing, UI design and mobile; the list goes on and is growing every day. As a software engineer, you will work on a specific project critical to Google’s needs with opportunities to switch teams and projects as you and our fast-paced business grow and evolve. We need our engineers to be versatile, display leadership qualities and be enthusiastic to take on new problems across the full-stack as we continue to push technology forward. The TPU Performance team is responsible for performance and extracting maximum efficiency for AI/ML training workloads. We drive Google Machine Learning performance using deep fleet-scale, benchmark analysis, and out of the box auto-optimizations. We focus on performance analysis to identify performance opportunities in Google production, research Machine Learning (ML) workloads, and land optimizations to the entire fleet. Our work demonstrates Machine Learning performance on the large-scale and latest accelerators at Machine Learning Performance. We push efficiency on multipod Machine Learning models. Google Cloud accelerates every organization’s ability to digitally transform its business and industry. We deliver enterprise-grade solutions that leverage Google’s cutting-edge technology, and tools that help developers build more sustainably. Customers in more than 200 countries and territories turn to Google Cloud as their trusted partner to enable growth and solve their most critical business problems. Responsibilities Focus on Large Language Models (Google Deepmind Gemini, Bard, Search Magi, Cloud LLM APIs), performance analysis, and optimizations. Identify and maintain Large Language Model (LLM) training and serving benchmarks that are representative to Google production, industry and Machine Learning community, use them to identify performance opportunities and drive TensorFlow/JAX TPU out-of-the-box performance, and to gate TF/JAX releases. Engage with Google Product teams to solve their LLM performance problem such as onboarding new LLM models and products on Google new TPU hardware, enabling LLMs to train efficiently on very large-scale (i.e., thousands of TPUs), etc. Explore model/data efficiency techniques such as new ML model architecture/optimizer/training technique to solve a ML task more efficiently, new techniques to reduce the label/unlabeled ML data needed to train a model to aim accuracy.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.