Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Staff Software Engineer, Machine learning Performance

Google
London
11 months ago
Applications closed

Related Jobs

View all jobs

Staff Data Scientist

Staff Data Science

Engineering Manager – Electrical Engineering (Power)

Security Services Field Success Representative

Policy and Campaigns Officer, Technology and Artificial Intelligence

ICT/Computer Science Instructor

Minimum qualifications: Bachelor's degree or equivalent practical experience. 8 years of experience in software development, and with data structures/algorithms. 5 years of experience testing, and launching software products, and 3 years of experience with software design and architecture. 5 years of experience with machine learning algorithms and tools (e.g., TensorFlow), artificial intelligence, deep learning, or natural language processing. Preferred qualifications: Experience in performance analysis and optimization, including system architecture, performance modeling, or similar. Experience working in a complex, matrixed organization involving cross-functional, or cross-business projects. Experience in a technical leadership role leading project teams and setting technical direction. Experience in distributed development and large-scale data processing. Experience in compiler optimizations or related fields. About the job Google's software engineers develop the next-generation technologies that change how billions of users connect, explore, and interact with information and one another. Our products need to handle information at massive scale, and extend well beyond web search. We're looking for engineers who bring fresh ideas from all areas, including information retrieval, distributed computing, large-scale system design, networking and data storage, security, artificial intelligence, natural language processing, UI design and mobile; the list goes on and is growing every day. As a software engineer, you will work on a specific project critical to Google’s needs with opportunities to switch teams and projects as you and our fast-paced business grow and evolve. We need our engineers to be versatile, display leadership qualities and be enthusiastic to take on new problems across the full-stack as we continue to push technology forward. The TPU Performance team is responsible for performance and extracting maximum efficiency for AI/ML training workloads. We drive Google Machine Learning performance using deep fleet-scale, benchmark analysis, and out of the box auto-optimizations. We focus on performance analysis to identify performance opportunities in Google production, research Machine Learning (ML) workloads, and land optimizations to the entire fleet. Our work demonstrates Machine Learning performance on the large-scale and latest accelerators at Machine Learning Performance. We push efficiency on multipod Machine Learning models. Google Cloud accelerates every organization’s ability to digitally transform its business and industry. We deliver enterprise-grade solutions that leverage Google’s cutting-edge technology, and tools that help developers build more sustainably. Customers in more than 200 countries and territories turn to Google Cloud as their trusted partner to enable growth and solve their most critical business problems. Responsibilities Focus on Large Language Models (Google Deepmind Gemini, Bard, Search Magi, Cloud LLM APIs), performance analysis, and optimizations. Identify and maintain Large Language Model (LLM) training and serving benchmarks that are representative to Google production, industry and Machine Learning community, use them to identify performance opportunities and drive TensorFlow/JAX TPU out-of-the-box performance, and to gate TF/JAX releases. Engage with Google Product teams to solve their LLM performance problem such as onboarding new LLM models and products on Google new TPU hardware, enabling LLMs to train efficiently on very large-scale (i.e., thousands of TPUs), etc. Explore model/data efficiency techniques such as new ML model architecture/optimizer/training technique to solve a ML task more efficiently, new techniques to reduce the label/unlabeled ML data needed to train a model to aim accuracy.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.