Staff Machine Learning Scientist (Recommendations)

Depop
London
3 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Staff Machine Learning Engineer

Staff / VP, Machine Learning Engineer (UK)

Senior Staff Engineer (Machine Learning) – 45391

Senior Machine Learning Researcher | AI Hospitality Platform | London, Hybrid | Up to £200,000+ Equity & Benefits

Senior Machine Learning Researcher | AI Hospitality Platform | London, Hybrid | Up to £200,000+ Equity & Benefits

Staff Machine Learning Scientist (Recommendations)

Team: Engineering & Data

Location: Depop - London

Company Description

Depop is the community-powered circular fashion marketplace where anyone can buy, sell and discover desirable secondhand fashion. With a community of over 35 million users, Depop is on a mission to make fashion circular, redefining fashion consumption. Founded in 2011, the company is headquartered in London, with offices in New York and Manchester, and in 2021 became a wholly-owned subsidiary of Etsy. Find out more at www.depop.com Our mission is to make fashion circular and to create an inclusive environment where everyone is welcome, no matter who they are or where they’re from. Just as our platform connects people globally, we believe our workplace should reflect the diversity of the communities we serve. We thrive on the power of different perspectives and experiences, knowing they drive innovation and bring us closer to our users. We’re proud to be an equal opportunity employer, providing employment opportunities without regard to age, ethnicity, religion or belief, gender identity, sex, sexual orientation, disability, pregnancy or maternity, marriage and civil partnership, or any other protected status. We’re continuously evolving our recruitment processes to ensure fairness and are open to accommodating any needs you might have. If, due to a disability, you need adjustments to complete the application, please let us know by sending an email with your name, the role to which you would like to apply, and the type of support you need to complete the application to . For any other non-disability related questions, please reach out to our Talent Partners.

Life is about creating. That's why we're home to over 30 million artists, stylists, designers, sneakerheads — and you? We're the community-powered, circular-minded marketplace changing the world of online fashion. Now it's time to get inspired at Depop.

Responsibilities

Job description

The Recommendations team builds models that power discovery at Depop, helping millions of users find items that they will love. As a Staff Machine Learning Scientist, you’ll set the technical vision for our next-generation recommendation models, lead high-impact initiatives, and mentor others to drive innovation at scale.

Responsibilities

You will:

Lead the design and deployment of advanced recommendation systems, encompassing encoder-based architectures, vector representations and large-scale retrieval.

Mentor, coach, and set technical direction within the Recommendations team, helping others grow and innovate.

Collaborate closely with cross-functional partners (product, engineering, data) to define problems, translate them into scalable solutions, and deliver measurable business outcomes.

Lead the end-to-end lifecycle of ML projects: from ideation, data acquisition, feature engineering, training, and evaluation to deployment and ongoing iteration.

Drive innovation in recommendation systems by researching and integrating emerging ML techniques, frameworks, and tooling, while contributing technical expertise to long-term product and data strategy.

Act as a thought leader in the recommendations space, sharing learnings internally, engaging with the wider ML community, and showcasing our work externally.

Qualifications

Proven track record in designing, deploying, and optimizing large-scale recommendation systems, including candidate retrieval and ranking models, with measurable impact in production environments.

Deep understanding of machine learning fundamentals and applied experience with architectures including collaborative filtering, deep learning, and hybrid recommendation approaches.

Proven ability to productionize ML models and pipelines: from prototyping to de

ployment, with strong experience in monitoring, iteration, and troubleshooting.

Advanced programming skills in Python and familiarity with ML frameworks such as PyTorch, TensorFlow, or similar.

Solid foundation in stats, experimental design, and working with offline/online evaluations in real-world settings.

Experience leading projects and mentoring engineers or scientists, with a track record of fostering team growth and technical excellence.

Excellent communication skills: able to bridge technical and non-technical stakeholders and influence decision making.

Committed to responsible AI practices, including attention to ethics, fairness, and inclusivity.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.