National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Sr. Data Scientist, FCGT

Amazon
London
2 days ago
Create job alert

Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. Amazon's evolution is driven by the spirit of innovation that is part of the company's DNA.

Amazon Seller Services is looking for a Data Scientist to work hands on from concept to delivery on generative AI, statistical analysis, prescriptive and predictive analysis, and machine learning implementation projects. We are looking for a problem solver with strong analytical skills and a solid understanding of statistics & machine learning algorithms as well as a practical understanding of collecting, assembling, cleaning and setting up disparate data from enterprise systems.

Key Job Responsibilities

  1. Ability to understand a business problem and the available data and identify what statistical or ML techniques can be applied to answer a business question.
  2. Given a business problem, estimate solution feasibility and potential approaches based on available data.
  3. Understand what data is available, where, and how to pull it together. Work with partner teams where needed to facilitate permissions and acquisition of required data.
  4. Quickly prototype solutions and build models to test feasibility of solution approach.
  5. Build statistical models/ML models, train and test them to drive towards the optimal level of model performance.
  6. Improve existing processes with development and implementation of state of the art generative AI models.
  7. Work with technology teams to integrate models by wrapping them as services that plug into Amazon's marketplace and fulfillment systems.
  8. Work across the spectrum of reporting and data visualization, statistical modeling and supervised learning tools and techniques and apply the right level of solution to the right problem.
  9. The problem set covers aspects of detecting fraud and abuse, improving performance, driving lift and adoption, recommending the right upsell to the right audience, cost saving, selection economics and several others.

BASIC QUALIFICATIONS

  • 5+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience.
  • 5+ years of data scientist experience.
  • Experience with statistical models e.g. multinomial logistic regression.

PREFERRED QUALIFICATIONS

  • Experience working with data engineers and business intelligence engineers collaboratively.
  • Experience managing data pipelines.
  • Experience as a leader and mentor on a data science team.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.


#J-18808-Ljbffr

Related Jobs

View all jobs

Sr. Data Scientist / Machine Learning Engineer - GenAI & LLM

Sr. Data Scientist / Machine Learning Engineer - GenAI

Sr. Data Scientist London, UK...

Sr. Data Scientist / Machine Learning Engineer - GenAI

Senior Data Scientist - Creative Optimization

Industry Analyst / Data Scientist - Market Growth & Financial Modelling

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.