Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Sr. AI Lead (Gen AI)

Wm. Wrigley Jr.
Maidenhead
7 months ago
Applications closed

Related Jobs

View all jobs

Sr. Data Scientist, GenAI Algorithms (Based in Dubai)

Sr. Data Scientist London, UK

Sr. Machine Learning Engineer London, UK

Sr. Machine Learning Engineer

Associate Director, AI Data Scientist

Senior Data Scientist - Planning

Job Description:

Chief Data Office (CDO) is a Mars Wrigley program that harnesses the power of data and insights to solve some of the critical business-wide problems we face – unlocking quality growth andoperationalexcellence.

Through CDO, we deliver connected insights across the entire Snacking ecosystem. We empower our Associates with the right data, tools and capabilities so they can take decisive action, maximizing value and making a meaningful impact on our consumers, our customers and our business.

This position will play a key role in leading the Mars Snacking ecosystem into the ever-evolving world of Generative AI. This role will lead Gen AI projects in planning and execution across varying types of use cases (creative and processionary). They will create and define frameworks, guidelines and standards to make sure that Mars Snacking is taking full advantage of this field.

They will also be expected to play hands-on when required and be able to guide the broader Data Science community through complex Gen AI and LLMOps projects.

What are we looking for?

  • 7+ years of experience working in a quantitative role preferably in the CPG, or retail industry.
  • 4+ years of experience managing a team of data scientists, product analysts or data analysts
  • Proven track record of delivering value through AI/ Data Science products in a fast-paced,agileenvironment using a scalable and reusable codebase and models to address business problems effectively.
  • Partner with businessleadershipacross functions to identify business challenges and opportunities and translate them unto actionable, integrated, data-driven solutions.
  • An expert understanding of LLMs, ML Ops, LLM Ops and pertinent design architecture elements.
  • An understanding of product management principles such as product definition, roadmap building and management, and product releases and commercialization
  • Hands on experience in building Agents and leveraging emerging technologies within Microsoft and Google to design an agentic ecosystem.
  • A strong customer centric mindset especially within an internal customer base with the purpose of driving value creation, adoption and use
  • Strategic thinking, problem solving and innovation, with the ability to anticipate and navigate challenges and opportunities. 
  • Ensure compliance with analytics standards, including tailoring methodologies to specific use case needs such as ML, AI, and descriptive analytics.
  • Ability to translate business needs into analytical frameworks & superior verbal and written communication skills
  • Proficiency and hands-on experience in advanced analytics techniques and machine learning algorithms, including NLP, time-series analysis and other relevant methods and willingness to coach data scientists tactically 
  • Working understanding of ML Ops and DevOps frameworks
  • Working expertise of OpenAI Endpoints, Google Vertex, Google Model Garden and Microsoft Suite of AI Models.

What will be your key responsibilities?

  • Serve as the key lead for Gen AI and LLM Ops in the Mars Snacking Community
  • Applies strong expertise in AI through use of machine learning, data mining, and statistical models to design, prototype and build next generation ML engines and services 
  • Design, architect and review technical architecture of data science solutions
  • Plan and lead data science projects that cover a diverse range of business problems
  • Serve as key point of contact with Data Engineering and DevOps teams, for solution architecture and infrastructure design
  • Review work of team members identifying optimum methodologies, advising on implementation, and checking business logic
  • Use machine learning techniques, visualizations, & statistical analysis to gain insight into various data sets – some readily available, and some you create and curate yourself 
  • Collaborate with internal and external teams to ensure we focus on product and service recommendations and be a key player in our network of talent
  • Contribute to a high performing data science function 
  • Create repeatable, interpretable, dynamic and scalable models that are seamlessly incorporated into analytic data products
  • Performance Monitoring: Define key performance indicators (KPIs) and implement monitoring systems for deployed data platforms and products to ensure efficient operations data operations, effective support services and incident management.
  • Solution ideation and Development: Guide a team of data scientists to create fit for purpose solutions using cutting edge analytical and AI methodologies.
  • Focus on setting up a Data Science AI program and delivery methodology: Entails, recruiting and forming a team to solve a specific problem; elaborating on a programmatic mindset and tracking value delivery

What can you expect from Mars?

  • Work with diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary andbenefitspackage, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.