Spatial Analyst (Remote - UK only)

Nature-based Insights
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Contract Python Engineer

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Job Title: Spatial Analyst

Contract:Permanent, full time

Salary:£32,000

Location: UK-based. Remote with provision for co-working space/office.


We are seeking a consultant with expertise in spatial analysis and a background in biodiversity to join the Nature-based Insights research team. 


This is an exciting opportunity to be part of an ambitious mission to translate cutting-edge science into practice. We work with a range of clients on how to tackle the most critical issues of our time - climate change and biodiversity loss -, whilst supporting economic recovery. We are looking for a talented individual with skills in data analysis and spatial analysis to help us work with more clients across a broad range of supply chains and landscapes.


Who we are

Nature-based Insights is a Social Venture spin-out of the University of Oxford’s Nature-based Solutions Initiative. Our mission is to apply the very latest science to help businesses implement nature-based solutions with integrity. 


Drawing on the University’s world-leading expertise and network, we apply cutting-edge scientific research to help organisations set and implement robust evidence-based targets for mitigating and insetting impacts on climate, biodiversity, and society through nature-based solutions.


We are a passionate team of individuals spanning a broad range of research interests, experiences and backgrounds. Typically, we work with large corporates and financial institutions covering global supply chains and assets with large landscape-scale geographies. We are driven by impact, and work with organisations who are serious about ensuring their climate, biodiversity, social commitments and strategies are ambitious, credible, and net-zero aligned. 


The role 

At the heart of our work is our Nature Analytics framework, supported by a quantitative model. Our model allows us to baseline biodiversity impact across a given landscape within a supply chain, identify risks and dependencies, scenario model for specific interventions and provides for long term monitoring.


With demand for our work increasing, we are looking to expand the quantitative skills within our team, so that we can apply our analysis to a broader set of landscapes across the world. This is an exciting role for someone with a background in quantitative ecology and biodiversity, helping develop the methodology of our model and apply it directly to businesses to effect real change. 


You will be joining Nature-based Insights at a pivotal time in our development, with a real opportunity to have an impact on our direction and work - working alongside a passionate network of colleagues, partners, clients, who share your mission and values.


You will be working with a range of local and global datasets for complex natural resource supply chains, to help inform biodiversity strategies - using the best science with some of the biggest global supply chain companies. 


Who we are looking for


We are looking for an independent researcher interested in building innovative solutions for our client services. The right candidate will be a natural problem solver, passionate about incorporating the latest technologies and methods into their work. The ability to translate scientific insights into decision ready information for our clients is also crucial.


We are proud to support our employees in their career aspirations - we’re always open to discussing how the role can be adapted or evolve to best suit both parties. 


Responsibilities


  • Write, develop and calibrate R scripts to analyse specific geographies and landscapes.
  • Apply R to spatial mapping, and produce maps to help convey insights for clients.
  • Create written outputs, translating scientific analysis from your work into valuable insights for our clients.
  • Research and develop outputs from analysis compatible with emerging nature-reporting frameworks, e.g. TNFD, SBTN, CRSD.
  • Critically appraise our existing model, identifying gaps and providing ideas and insights for future development.
  • Work with the team to review and synthesise relevant literature to calibrate our model for specific contexts and scenarios.
  • Support the production and maintenance of our scientific methodology documentation.
  • Where appropriate, attend client meetings and presentations to provide scientific insight and advice.
  • Keep up to date with the latest in biodiversity datasets and monitoring technologies.
  • Depending on experience, contribute to monitoring and evaluation of NbS interventions in landscapes, including methodology design, implementation and analysis.




Skills, experience, qualifications


Essential:


  • Strong spatial and data analysis skills in R, includingterra,sfand data wrangling withtidyverse.
  • Experience in developing methodologies and conducting statistical analysis within biodiversity-related projects.
  • Excellent communication skills, both verbal and written across a range of mediums, including reports, articles and presentations, ideally for both academic and business audiences.
  • Experience of working within a team of researchers to project deadlines.
  • PhD in environmental, ecological or similar discipline, or have equivalent experience.
  • Willingness to travel internationally to supply chain landscapes.


Desirable:


  • Experience in using Google Earth Engine.
  • Experience with Shiny.
  • Ability to apply machine learning to LULC analysis.
  • Field ecology and monitoring experience. 
  • Understanding of global nature reporting frameworks such as TNFD and SBTN.
  • Experience within consultancy, ideally with corporate or financial institution clients.


What we offer:


  • Salary: £32,000
  • Remote first (UK-based), with allowance for co-working or homeworking set up, including budget to be used for desk, chair or any ergonomic equipment.
  • 25 days annual leave, plus public holidays.
  • Pension with ethical portfolio and salary sacrifice option.
  • All computer equipment, including laptop, screen and peripherals.
  • Networking and collaboration opportunities at University of Oxford.


How to apply

Please send your CV and covering letter to .


After shortlisting candidates, interviews will be conducted through a process of initial screening, formal interview, with potential for final subsequent interview, depending on the candidate pool. We aim to provide feedback for anyone invited to interview but unfortunately cannot extend this to non-shortlisted candidates.


We are looking to fulfil this role ASAP and applicants will be reviewed on a rolling basis. 


Nature-based Insights is committed to equality and value diversity. We particularly encourage application of women and those that come from minority backgrounds.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.