Solution Architect

Windsor
1 month ago
Applications closed

Related Jobs

View all jobs

Solution Architect

Data & AI Solution Architect

Data & AI Solution Architect

Pre-Sales AI Solution Designer

Contract Python Software Engineer - Trading

IT Technical Architect

About your role:

We're looking for a Software Architect to lead the design and implementation of high-level software architectures, collaborating with cross-functional teams-including machine learning and data scientists and external product teams-to deliver innovative solutions aligned with business objectives. This role exists to ensure the development of scalable, efficient, and integrated software systems while leading the team to uphold best practices and achieve project goals. We're seeking an experienced and adaptable Software Architect with strong leadership abilities and expertise in collaborative, cloud-based software development, ideally in a corporate research environment.

The team is currently primarily in Antwerp, Belgium but we are building a Windsor, Berkshire-centred team to match. This is a hybrid working position, based in Windsor, Berkshire (2 days on-site). It will be useful to be able to travel between the locations.

Key responsibilities will include:

Solution Architecture and Design

Design and oversee high-level software architectures aligned with business objectives.

Apply data engineering principles to design efficient data pipelines and storage.

Integrate solutions seamlessly with machine learning models and data science workflows.

Technical Leadership and Collaboration

Collaborate closely with researcher engineers, data scientists, software and DevOps engineers, to ensure the quality of solutions.

Promote best practices within the team, including rigorous testing, code review, continuous integration/continuous deployment (CI/CD) techniques, and well-maintained documentation.

Introduce innovative solutions using emerging technologies.

Team Leadership and Development

Lead and mentor a team of developers, fostering excellence.

Enhance team skills in coding practices and technical competencies.

Conduct performance evaluations and support career growth.

Here's what we're looking for:

Professional experience

A bachelor's degree in computer science, Software Engineering, or a related field is required; a master's degree or relevant certifications (such as AWS Certified Solutions Architect) are highly desirable.

Professional experience in software development, including significant experience in software architecture and team leadership.

Proven ability to design high-level software architectures aligned with business goals.

Technical knowledge

Understanding of data architecture concepts and best practices to support our machine learning and data science activities.

Experience in architecting and managing scalable cloud-native solutions particularly on AWS.

Advanced knowledge of Python programming and relevant frameworks.

Bonus: Working knowledge of other languages, especially JVM-based, Go, or Rust.

Bonus: Familiarity with some of our other key applications, e.g. web or mobile front-end design, data persistency, IoT devices.

Leadership and Software Management

Experience with testing, code review practices, code deployment, and infrastructure management.

Proven ability to lead and mentor development teams effectively.

Experience conducting performance evaluations and supporting career growth.

Skilled in fostering a collaborative and high-performance team environment.

Communication and Collaboration

Excellent verbal and written communication skills.

Ability to collaborate closely with cross-functional teams and stakeholders.

Skilled in conveying complex technical concepts to non-technical audiences

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.