Software Engineer (Signal Processing and AI)

Matchtech
London
1 year ago
Applications closed

Related Jobs

View all jobs

Software Engineer, Applied Artificial Intelligence (AI)

Software Engineer, Applied Artificial Intelligence (AI)

Lead Software Engineer - MLOps Platform

Lead Software Engineer (Machine Learning)

Digital and Technology Solutions Apprenticeship - Artificial Intelligence Software Engineering

Digital and Technology Solutions Apprenticeship - Artificial Intelligence Software Engineering

Our client, a leader in defence and security technology, is seeking a Software Engineer with a focus on Signal Processing and AI to join their team. This permanent role offers an exciting opportunity to work on cutting-edge solutions that safeguard naval forces worldwide.Key Responsibilities:Software architectural design using UML and the Enterprise Architect toolSoftware implementation and testing in C++, including unit and continuous integration testingSonar signal processing algorithm implementation, integration, and optimisationArtificial Intelligence algorithm implementation, integration, and optimisationDeveloping high-quality, well-thought-out codePeer reviewing design and code, contributing to a learning-focused communityIntegration, defect analysis, and resolution to assist verification teamsManaging assigned tasks and stories in a product backlog using Azure DevOps, including estimating remaining workPeriodic verbal reporting on progress and contributing to sprint planning and retrospectivesJob Requirements:Experience in C++ developmentUnderstanding of multi-threaded designExperience in signal processing and/or AI/ML techniquesKnowledge of UML design techniquesFamiliarity with the full software development lifecycleUnderstanding of machine learning (advantageous)Experience with Python (advantageous)Knowledge of packaging tools and repositories such as Conan and Nexus (advantageous)Benefits:Our client supports flexible working arrangements, including hybrid models, remote work, and on-site options. Offering a 9-day fortnight working pattern, providing extended weekends every other week. Flexible start and finish times, as well as Time Off in Lieu (TOIL), contribute to a supportive and balanced work environment.If you are a skilled Software Engineer looking to contribute to the future of naval warfare, we encourage you to apply now and join our client's innovative team! Please reach out to me for more details

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.