Software Engineer (ML Infra)

Adamas Knight
London
2 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer

Software Engineer

Software Engineer

Software Engineer (Python React)

Software Engineer Lead

Software Engineer - Mandarin Speaking

About the job


Adamas Knight is recruiting for a groundbreaking AI Lab, backed by some of the biggest names in industry, working on building their own proprietary foundation model within the multi-modal domain - text and vision.


With one of the best compute in industry, they are looking for a ML Infrastructure Engineer to join the team.


The Role


As a ML Infrastructure Engineer, you will be instrumental in designing, building, and optimizing the infrastructure that supports their deep learning models. Working closely with the Research Scientist and Engineers, you will be central to creating robust machine learning pipelines, managing computational resources, and automating workflows, enabling our team to innovate and deploy AI models at scale.


You will:


  • Design and Optimize ML Pipelines: Build and maintain end-to-end machine learning pipelines, including data pre-processing, model training, evaluation, and deployment automation.
  • Infrastructure Management: Develop and manage scalable cloud-based and/or on-prem infrastructure to support the execution of machine learning experiments and model training (e.g., AWS, GCP, Azure, Kubernetes, Docker).
  • Model Deployment: Work closely with AI researchers to ensure seamless deployment of machine learning models into production environments, focusing on scalability, reliability, and performance.
  • Automate Workflow and Resource Management: Implement tools and automation scripts to optimize the use of computing resources, including the management of GPU/TPU resources and distributed training infrastructure.
  • Monitoring and Scaling: Build monitoring solutions to track performance, usage, and reliability of ML models and infrastructure, ensuring that systems scale rapidly as needed.
  • Continuous Improvement: Stay up to date with the latest trends and advancements in machine learning infrastructure and MLOps, and apply them to enhance team productivity and system performance.


Benefits/Perks


Attractive Compensation:Enjoy a competitive salary and the opportunity to invest in your future with equity in the company

Comprehensive Benefits:Access private healthcare, a gym allowance, and catered lunches to support your well-being

Work-Life Balance:Benefit from flexible working hours that fit your lifestyle



At Adamas Knight, we are committed to creating an inclusive culture. We do not discriminate based on race, religion, gender, national origin, sexual orientation, age, veteran status, disability, or any other legally protected status. Diversity is highly valued, and we encourage applicants from all backgrounds to apply.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.