Software Engineer (ML Infra)

Adamas Knight
London
1 year ago
Applications closed

Related Jobs

View all jobs

Software Engineer - Large Language Models

Software Engineer - Large Language Models

Software Engineer - Large Language Models

Software Engineer - Large Language Models

Software Engineer - Large Language Models

Software Engineer - Large Language Models

About the job


Adamas Knight is recruiting for a groundbreaking AI Lab, backed by some of the biggest names in industry, working on building their own proprietary foundation model within the multi-modal domain - text and vision.


With one of the best compute in industry, they are looking for a ML Infrastructure Engineer to join the team.


The Role


As a ML Infrastructure Engineer, you will be instrumental in designing, building, and optimizing the infrastructure that supports their deep learning models. Working closely with the Research Scientist and Engineers, you will be central to creating robust machine learning pipelines, managing computational resources, and automating workflows, enabling our team to innovate and deploy AI models at scale.


You will:


  • Design and Optimize ML Pipelines: Build and maintain end-to-end machine learning pipelines, including data pre-processing, model training, evaluation, and deployment automation.
  • Infrastructure Management: Develop and manage scalable cloud-based and/or on-prem infrastructure to support the execution of machine learning experiments and model training (e.g., AWS, GCP, Azure, Kubernetes, Docker).
  • Model Deployment: Work closely with AI researchers to ensure seamless deployment of machine learning models into production environments, focusing on scalability, reliability, and performance.
  • Automate Workflow and Resource Management: Implement tools and automation scripts to optimize the use of computing resources, including the management of GPU/TPU resources and distributed training infrastructure.
  • Monitoring and Scaling: Build monitoring solutions to track performance, usage, and reliability of ML models and infrastructure, ensuring that systems scale rapidly as needed.
  • Continuous Improvement: Stay up to date with the latest trends and advancements in machine learning infrastructure and MLOps, and apply them to enhance team productivity and system performance.


Benefits/Perks


Attractive Compensation:Enjoy a competitive salary and the opportunity to invest in your future with equity in the company

Comprehensive Benefits:Access private healthcare, a gym allowance, and catered lunches to support your well-being

Work-Life Balance:Benefit from flexible working hours that fit your lifestyle



At Adamas Knight, we are committed to creating an inclusive culture. We do not discriminate based on race, religion, gender, national origin, sexual orientation, age, veteran status, disability, or any other legally protected status. Diversity is highly valued, and we encourage applicants from all backgrounds to apply.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.