Software Developer - Machine Learning Infrastructure

Squarepoint Capital
London
4 months ago
Applications closed

Related Jobs

View all jobs

Software Developer - Trading Systems

Software Developer (C++/Python)

Senior Backend Software Developer

Front End Developer

Senior Full Stack Developer

Software Engineer (Python React)

Squarepoint is a global investment management firm that utilizes a diversified portfolio of systematic and quantitative strategies across financial markets that seeks to achieve high quality, uncorrelated returns for our clients. We have deep expertise in trading, technology and operations and attribute our success to rigorous scientific research. As a technology and data-driven firm, we design and build our own cutting-edge systems, from high performance trading platforms to large scale data analysis and compute farms. With offices around the globe, we emphasize true, global collaboration by aligning our investment, technology and operations teams functionally around the world.

Role: Software Developer - Machine Learning Infrastructure

Team: Data Products

Department: Data Development

Squarepoint is looking for a range of Software developers with strong technical skills for the Machine Learning Infrastructure team.

You will be part of a team that designs, builds and maintains several backend applications and frameworks used by quants and traders, who they work closely with day to day. The team has multi-year roadmaps and are tasked with developing flexible, scalable, and well-designed systems that can accommodate future new features. 

The role will involve working closely with data scientists and ML researchers as well as other developers to architect, design, build and maintain our constantly evolving ML infrastructure and ultimately be accountable for it along with your team. While we’re ultimately looking for software developers, having an interest in ML infrastructure or previous experience in the field is highly desirable.

Position Overview:

Take stock of any existing code base, work on consolidation and streamlining of repositories and propose an internal technical roadmap. Work closely with our investment stakeholders and quantitative researcher to maintain alignment with their requirements. Build and maintain scalable, tested, production grade systems and infrastructure for containerization, deployment, versioning, testing and monitoring of ML models and more.  Take full ownership of the products you and your team work on to ensure continued support and improvements. Support and troubleshoot live production systems. Willingness to pick up and learn new software, ML technologies and tools used by data scientists.

Required Qualifications:

Bachelor’s degree in computer science, Engineering, or related subject Minimum of 5 years of fulltime software development experience Experience with highly available distributed systems and working with large datasets High proficiency in Python and/or Rust Kubernetes experience Experience working in a Linux environment, using version control. 

Nice to have:

Experience with Vector storage and search for generative AI Exposure to any of the following: SLURM, PostgreSQL Cloud (AWS or GCP) exposure Basic knowledge of financial markets Experience with gRPC, Apache Arrow Experience with ML frameworks such as PyTorch and TensorFlow Experience with ML infrastructure frameworks like Kubeflow, MLFlow etc Basic knowledge of financial markets

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.