Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Software Engineer, ML Ops (Hiring Immediately)

Ki Insurance
London
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer (AI & MLOps, AWS, Python)

Senior MLOps Engineer

Senior MLOps Engineer

Machine Learning Engineer

Sr. Machine Learning Engineer

Data Scientist

Who are we?


Look at the latest headlines and you will see something Ki insures. Think space shuttles, world tours, wind farms, and even footballers’ legs. Ki’s mission is simple. Digitally disrupt and revolutionise a 335-year-old market. Working with Google and UCL, Ki has created a platform that uses algorithms, machine learning and large language models to give insurance brokers quotes in seconds, rather than days. Ki is proudly the biggest global algorithmic insurance carrier. It is the fastest growing syndicate in the Lloyd's of London market, and the first ever to make $100m in profit in 3 years. Ki’s teams have varied backgrounds and work together in an agile, cross-functional way to build the very best experience for its customers. Ki has big ambitions but needs more excellent minds to challenge the status-quo and help it reach new horizons.


What’s the role?


Our broker platform is the core technology to Ki's success – allowing us to evolve underwriting intelligently and unlock massive scale.


We're a multi-disciplined team, bringing together expertise in software and data engineering, full stack development, platform operations, algorithm research, and data science. Our squads focus on delivering high-impact features – we favour a highly iterative, analytical approach.


Initially, you would be working as part of the core technology group in the model ops squad. The Model Ops squad are focused on enabling Ki to build and deploy best in market algorithmic underwriting models and graphs of models at scale. Sample products you might be involved in building include, developer tooling, microservice orchestration systems, ML model serving infrastructure, feature serving and storage infrastructure.


Principal Accountabilities:


  • Build robust and scalable software for business critical, web-based applications
  • Design, build, test, document and maintain API’s and integrations
  • Ensure quality control using industry standard techniques such as automated testing, pairing, and code review
  • Document technical design and analysis work
  • Assess current system architecture and identify opportunities for growth and improvement
  • Build mock-ups or prototypes to explore and troubleshoot new initiatives
  • Explore new ideas and emerging technologies, develop prototypes quickly
  • Uphold and advance the wider engineering team’s principles and ways of working
  • Serve as a domain expert for one or more of Ki’s core technologies
  • Mentor and coach colleagues in both engineering and business domain subjects


Required Skills and Experience:


  • Experience as a mid-senior level engineer working across a modern stack
  • Strong software engineering principles (SOLID, DRY, data modelling)
  • Professional experience with a server-side language, ideally Python
  • Comfortable working with cloud infrastructure, infrastructure as code, familiar with standard logging and monitoring tools used to investigate issues
  • Experience with continuous integration, or ideally, continuous delivery
  • Strong familiarity with build tools and version control tools (e.g. Git/Github)
  • Experience working in agile teams, following Scrum or Kanban, participating in regular ceremonies including stand-ups, planning, and retrospectives
  • Previous experience of software development in the financial markets, Fintech or Insurtech is preferable
  • Experience or interest in building developer tooling, platform engineering, and/or machine learning is desirable


Our culture


Inclusion & Diversity is at the heart of our business at Ki. We recognise that diversity in age, race, gender, ethnicity, sexual orientation, physical ability, thought and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.


You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.