Senior SME Credit Risk Manager

Harnham
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Machine Learning Research Engineer

Senior Machine Learning Engineer

Senior Data Scientist

Senior Machine Learning Scientist

Senior Machine Learning Engineer

SENIOR CREDIT RISK MANAGER – SME LENDING

£100-120,000

LONDON (3 days p/w)

THE COMPANY

This is an exciting opportunity with an ambitious FinTech that focus on harnessing data to enhance their lending decisions. This business have been growing in recent years and are now in an excellent position where they are targeting further success across multiple geographies.

THE ROLE

  • Developing lending strategies, specifically in acquisitions and ECM, to enhance profitability and decisioning
  • Leading a small team of analysts, helping with strategic direction but remaining hands on with analytics
  • Analysing trends in lending portfolios to drive insight and enhance business performance
  • Leading the incorporation of new data sources to enhance and improve decisioning, collaborating with teams including Product, Data Science and Marketing to incorporate new data sources and improve business performance

YOUR SKILLS AND EXPERIENCE

  • Previous experience in and knowledge of SQL is essential
  • Experience in developing lending strategies in a consumer lending environment is essential
  • Essential to have had prior management experience
  • Experience with SME or wider business lending is highly desirable

SALARY AND BENEFITS

  • Base salary of up to £100-120,000
  • Discretionary Bonus
  • Company pension scheme
  • Company equity
  • 25 days holiday

HOW TO APPLY

Please register your interest by sending your CV to Rosie Walsh through the ‘Apply’ link

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.