Senior ML Researcher

Seer
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Data Scientist & Machine Learning Researcher

Senior Machine Learning Engineer

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Research Engineer

Job Title:

Senior ML Researcher


Location:

London, UK (Hybrid)


Salary:

Up to £105k + Equity



About the Company:

Join a VC funded deep tech startup working on the cutting-edge of machine learning interpretability and knowledge discovery.



Job Overview:

You'll collaborate within a small team to conduct impactful AI research in interpretability, AutoML, and scientific discovery. Not only that, but also expect to contribute and lead projects that develop novel techniques for training and interpreting deep neural networks, while staying updated on the field, coding efficiently, and sharing findings through publications and presentations.



Qualifications and Skills:

  • A PhD or equivalent experience in a technical field with a track record of novel research, strong creative problem-solving skills in uncharted areas, and a broad understanding of machine learning state-of-the-art.
  • Must have hands-on deep learning experience, efficient coding abilities, strong communication, thorough documentation habits, and excellent time management and organisational skills.
  • Experience in AI interpretability, explainability, AI safety, AutoML, or AI applications in science, with a strong publication record in machine learning and experience handling real-world scientific datasets.



Benefits:

  • Free in-office meals, snacks, and beverages
  • Continuous learning stipend
  • Home office stipend



PLEASE NOTE: YOU HAVE TO BE BASED IN THE UK. VISA SPONSORSHIP & RELOCATION IS NOT PROVIDED.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.