Senior Machine Learning Ops Engineer

WhatJobs
Belfast
6 days ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer, Ads Contextual Intelligence Remote - United Kingdom

Principal Data Scientist - NLP

Senior/Staff Machine Learning Engineer

Senior AI | Machine Learning Engineer

Applied AI ML Senior Associate - Machine Learning Center of Excellence - Time Series Reinforcement Learning

DailyPay is transforming the way people get paid. As a worktech company and the industry's leading earned wage access solution, DailyPay uses an award-winning technology platform to help America's top employers build stronger relationships with their employees. This voluntary employee benefit enables workers everywhere to feel more motivated to work harder and stay longer on the job while supporting their financial well-being outside of the workplace. DailyPay is headquartered in New York City, with operations throughout the United States as well as in Belfast. For more information, visit DailyPay's Press Center. The Role: We are seeking a highly skilled and motivated Senior MLOps Engineer to join our growing team in Belfast. You will play a crucial role in maturing and scaling our machine learning infrastructure and processes, ensuring the reliability, scalability, and performance of our ML models in production. This role requires a strong background in MLOps principles, cloud technologies (AWS), and a passion for building robust and efficient systems. You will collaborate closely with data scientists, engineers, and product teams to deliver high-quality ML solutions that directly impact our business. The mission of the Data Science Team is critical for the continuous development and success of our product, understanding the needs of our customers and partners, and maintaining DailyPay's leading role in the early wage access industry. As a staff MLOps Engineer, you will be instrumental in helping to realize this vision for DailyPay by enabling efficient and effective deployment and management of machine learning models. How You Will Make an Impact: Design and Implement MLOps Solutions: Design and implement scalable and efficient ML pipelines and workflows, encompassing model training, deployment, monitoring, and retraining. Contribute to the development and implementation of MLOps best practices Cloud Infrastructure Management: Manage and optimize our AWS cloud infrastructure for machine learning, ensuring cost-effectiveness, security, and high availability CI/CD Pipeline Development: Develop and maintain robust CI/CD pipelines for continuous integration and deployment of ML models and related infrastructure Monitoring and Observability: Build and maintain comprehensive monitoring and alerting systems for our ML infrastructure and models, leveraging tools like DataDog to ensure system health and performance Collaboration and Mentorship: Collaborate effectively with data scientists, engineers, and other stakeholders. Provide guidance and support to junior team members Performance Optimization: Continuously optimize ML model performance, data pipelines, and infrastructure to meet evolving business needs Security and Compliance: Ensure the security and compliance of our machine learning applications and data pipelines, adhering to industry best practices and regulations Problem Solving and Troubleshooting: Proactively identify and resolve issues related to ML model performance, data integrity, and infrastructure What You Bring to The Team: Bachelor's or Master's degree in Computer Science, Data Science, Engineering, or a related field 3+ years of experience in machine learning operations, data engineering, or related roles AWS Proficiency: Strong understanding of AWS services (e.g., EC2, S3, Lambda, SageMaker, ECS) and cloud infrastructure management Programming and ML Frameworks: Proficiency in Python and experience with ML frameworks such as scikit-learn, TensorFlow, or PyTorch CI/CD Experience: Experience with CI/CD tools and practices (e.g., GitHub Actions, Jenkins) and the ability to design and implement efficient CI/CD pipelines Containerization and Orchestration: Knowledge of containerization and orchestration technologies (e.g., Docker, Kubernetes) Monitoring and Logging: Experience with monitoring and logging tools like DataDog, Prometheus, or Grafana Data Engineering Skills: Knowledge of event streaming platforms (e.g., Apache Kafka) and SQL database management Strong Communication and Collaboration: Excellent communication skills and the ability to work effectively in a remote, collaborative environment Nice to Haves: Experience with infrastructure-as-code tools like Terraform or CloudFormation. Familiarity with microservices architecture and RESTful API design. Experience leading small projects and managing stakeholders. Contributions to open-source projects or participation in the MLOps community. What We Offer: Competitive compensation Opportunity for equity ownership Private health insurance option Employee Resource Groups Fun company outings and events Generous PTO Allowance 5% Pension contribution DailyPay does not accept and will not review unsolicited resumes from search firms. DailyPay is committed to fostering an inclusive, equitable culture of belonging, grounded in empathy and respect, which values openness to opinions, awareness of lived experiences, fair treatment and access for all. We strive to build and develop diverse teams to create an organisation where innovation thrives, where the full potential of each person is engaged, and their views, beliefs and values are integrated into our ways of working. We are an equal opportunities employer and welcome applications from all sections of the community. To be considered for this role you will be redirected to and must complete the application process on our careers page. To start the process, click the Apply button below to Login/Register.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.

AI Programming Languages for Job Seekers: Which Should You Learn First to Launch Your AI Career?

Artificial Intelligence (AI) is no longer confined to academic research; it now sits at the core of countless modern industries. From healthcare diagnostics powered by machine learning to autonomous driving and natural language processing, organisations are investing heavily in AI capabilities. This surge in AI adoption has created a thriving job market for talented professionals—data scientists, machine learning engineers, AI researchers, and more. Yet if you’re aiming to break into this fast-growing field, one of the first questions you’ll ask is, “Which AI programming language should I learn first?” Given the array of options available—Python, R, Java, C++, Julia, among others—understanding the strengths, community support, and industry relevance of each is crucial. In this extensive guide, tailored for www.artificialintelligencejobs.co.uk, we’ll explore the top AI programming languages that can help you stand out to employers, accelerate your learning curve, and equip you with the skills to succeed in a competitive job market. By addressing both beginners and experienced programmers, we aim to provide actionable insights to help you choose the right language, master essential tools, and build a compelling career in AI.