Senior Machine Learning Engineer, Pricing

TN United Kingdom
London
1 week ago
Create job alert

Social network you want to login/join with:

Senior Machine Learning Engineer, Pricing, London

col-narrow-left

Client:Location:

London, United Kingdom

Job Category:

-

EU work permit required:

Yes

col-narrow-right

Job Reference:

6168a9af1e2b

Job Views:

8

Posted:

26.04.2025

Expiry Date:

10.06.2025

col-wide

Job Description:Description

At Zego, we know that traditional motor insurance holds good drivers back. It’s too complicated, too expensive, and it doesn't take into account how well you actually drive.

That’s why, since 2016, we’ve been on a mission to change all of that. Our mission at Zego is to offer the lowest priced insurance for good drivers.

From van drivers and gig workers to everyday car drivers, our customers are our driving force — they’re at the heart of everything we do.

We’ve sold tens of millions of policies so far, and raised over $200 million in funding. And we’re only just getting started.

Who we're looking for

We are looking for a Senior Machine Learning Engineer to play a key role in our Core Pricing team. You will drive innovation by optimising and automating Pricing processes to enable faster, more accurate decision-making. Your work will focus on developing and maintaining tooling and frameworks that enhance the efficiency of our predictive models, reducing deployment times, increasing scalability, and improving model performance through regular updates and monitoring. You will work closely with our Data Scientists, Actuaries, and Product team to deliver scalable, production-grade ML systems.

Key Responsibilities

  • Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models)
  • Maintain and improve the development environment (Kubeflow) used by our Data Scientists and Actuaries
  • Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work
  • Collaborate with the technical pricing, street pricing and product teams to gather requirements and feedback on tooling and to build impactful technology
  • Communicate complex concepts to technical and non-technical stakeholders through clear storytelling

Required Skills

  • Education: Bachelor’s or Master’s degree in Statistics, Data Science, Computer Science or related field
  • Experience: Proven experience in ML model lifecycle management
  • Core Competencies:
  • Model lifecycle: You’ve got hands-on experience with managing the ML model lifecycle, including both online and batch processes
  • Statistical Methodology: You have worked with GLMs and other machine learning algorithms and have in-depth knowledge of how they work
  • Python: You have built and deployed production-grade Python applications and you are familiar with data science libraries such as pandas and scikit-learn
  • DevOps: You have experience working with DevOps tooling, such as gitops, Kubernetes, CI/CD tools (we use buildkite) and Docker
  • Cloud: You have worked with cloud-based environments before (we use AWS)
  • SQL: You have a good grasp of SQL, particularly with cloud data warehouses like Snowflake
  • Version control: You are proficient with git
  • Soft Skills:
  • You are an excellent communicator, with an ability to translate non-technical requirements into clear, actionable pieces of work
  • You have proven your project management skills, with the ability to manage multiple priorities
  • You have worked closely together in cross-functional teams, including with Data Scientists, Actuaries, and Product Managers

Nice To Have

  • Experience in UK motor insurance
  • Telematics Data: Familiarity with behavioural driving data and its application in insurance pricing
  • Understanding of pricing modelling tools such as Akur8 or Emblem
  • Experience with IaC (we use Terraform)
  • Experience with gRPC/protobuf

What’s it like to work at Zego?

Joining Zego is a career-defining move. People go further here, reaching their full potential to achieve extraordinary things.

We’re spread throughout the UK and Europe, and united by our drive to get things done. We’re proud of our company and our culture – a friendly and inclusive space where we can lift each other up and celebrate our wins every day.

Together, we’re setting the bar higher, delivering exceptional work that makes a difference. Our people are the most important part of our story, and everyone here plays a role. There’s loads of room to learn and grow, and you’ll get the freedom to steer your career wherever you want.

You’ll work alongside a talented group who embrace each other's differences and aren’t afraid of a challenge. We recognise our achievements, learn from our mistakes, and help each other to be the best we can be. Together, we’re making insurance matter.

How we work

We believe that teams work better when they have time to collaborate and space to get things done. We call it Zego Hybrid. We ask you to spend at least one day a week in our central London office. We think it’s a good mix of collaborative face time and flexible home-working, setting us up to achieve the right balance between work and life.

We reward our people well. Join us and you’ll get a market-competitive salary, private medical insurance, company share options, generous holiday allowance, and a whole lot of wellbeing benefits. We also offer an annual flexible hybrid working contribution, which you can use to support with your travel to the office or towards your own personal development. And that’s just for starters!

There’s more to Zego than just a job - Check out ourblogfor insights, stories, and more.

We’re an equal opportunity employer and we value diversity at our company. We do not discriminate on the basis of race, religion, national origin, gender, sexual orientation, age, marital status, or disability status.

#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer, Pricing

Machine Learning Product Engineer (Hybrid)

Machine Learning Researcher | Deep Learning | Graph Neural Networks | Python | PyTorch

Applied Scientist (Machine Learning)

Sr Data Scientist - voice

Lead / Senior Applied Data Scientist - Causal AI for Demand Forecasting

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.