Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer - Graph ML

BenchSci
London
2 months ago
Create job alert

Join to apply for the Senior Machine Learning Engineer - Graph ML role at BenchSci

Join to apply for the Senior Machine Learning Engineer - Graph ML role at BenchSci

We are looking for a Senior Machine Learning Engineer to join our Knowledge Enrichment team at BenchSci.

You will help design and implement ML-based approaches to analyze, extract and generate knowledge from complex biomedical data such as experimental protocols and from results from several heterogeneous sources, including both publicly available data and proprietary internal data, represented in unstructured text and knowledge graphs. You will work alongside some of the brightest minds in tech, leveraging state of the art approaches to deliver on BenSci’s mission to expedite drug discovery. Knowledge Enrichment is at the core of this challenge as it ensures we can reason over and gain insights from an extensive, accurate, and high quality representation of biomedical data.

The data will be leveraged in order to enrich BenchSci’s knowledge graph through classification, discovery of high value implicit relationships, predicting novel insights/hypotheses, and other ML techniques. You will collaborate with your team members in applying state of the art ML and graph ML/data science algorithms to this data.

You are comfortable working in a team that pushes the boundaries of what is possible with cutting edge ML/AI, challenges the status quo, is laser focused on value delivery in a fail-fast environment.

You Will:


  • Analyze and manipulate a large, highly-connected biological knowledge graph constructed of data from multiple heterogeneous sources, in order to identify data enrichment opportunities and strategies
  • Work with data and knowledge engineering experts to design and develop knowledge enrichment approaches/strategies that can exploit data within our knowledge graph
  • Provide solutions related to classification, clustering, more-like-this-type querying, discovery of high value implicit relationships, and making inferences across the data that can reveal novel insights
  • Deliver robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Architect and design ML solutions, from data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and monitoring
  • Collaborate with your teammates from other functions such as product management, project management and science, as well as other engineering disciplines
  • Sometimes provide technical leadership on Knowledge Enrichment projects that seek to use ML to enrich the data in BenchSci’s Knowledge Graph
  • Work closely with other ML engineers to ensure alignment on technical solutioning and approaches.
  • Liaise closely with stakeholders from other functions including product and science
  • Help ensure adoption of ML best practices and state of the art ML approaches within your team(s).Participate in various agile rituals and related practices


You Have:


  • Minimum 3, ideally 5+ years of experience working as an ML engineer
  • Some experience providing technical leadership on complex projects
  • Degree, preferably PhD, in Software Engineering, Computer Science, or a similar area
  • A proven track record of delivering complex ML projects working alongside high-performing ML, data, and software engineers using agile software development
  • Demonstrable ML proficiency with a deep understanding of how to utilize state-of-the-art NLP and ML techniques
  • Mastery of several ML frameworks and libraries, with the ability to architect complex ML systems from scratch
  • Extensive experience with Python and PyTorch
  • Track record of contributing to the successful delivery of robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Experience with the full ML development lifecycle from architecture and technical design, through data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and maintenance
  • Familiarity with implementing solutions leveraging Large Language Models, as well as a deep understanding of how to implement solutions using Retrieval Augmented Generation (RAG) architecture
  • Experience with graph machine learning (i.e. graph neural networks, graph data science) and practical applications thereof
  • This is complimented by your experience working with Knowledge Graphs, ideally biological, and a familiarity with biological ontologies
  • Experience with complex problem solving and an eye for details such as scalability and performance of a potential solution
  • Comprehensive knowledge of software engineering, programming fundamentals and industry experience using Python
  • Experience with data manipulation and processing, such as SQL, Cypher or Pandas
  • A can-do proactive and assertive attitude - your manager believes in freedom and responsibility and helping you own what you do; you will excel best if this environment suits you
  • You have experience working in cross-functional teams with product managers, scientists, project managers, engineers from other disciplines (e.g. data engineering).Ideally you have worked in the scientific/biological domain with scientists on your team
  • Outstanding verbal and written communication skills. Can clearly explain complex technical concepts/systems to engineering peers and non-engineering stakeholders
  • A growth mindset continuously seeking to stay up-to-date with cutting-edge advances in ML/AI, complimented by actively engaging with the ML/AI community


About BenchSci:

BenchSci's mission is to exponentially increase the speed and quality of life-saving research and development. We empower scientists to run more successful experiments with the world's most advanced, biomedical artificial intelligence software platform.

Backed by Generation Investment Management, TCV, Inovia, F-Prime, Golden Ventures, and Google's AI fund, Gradient Ventures, we provide an indispensable tool for scientists that accelerates research at 16 top 20 pharmaceutical companies and over 4,300 leading academic centers. We're a certified Great Place to Work, and top-ranked company on Glassdoor.

Our Culture:

BenchSci relentlessly builds on its strong foundation of culture. We put team members first, knowing that they're the organization's beating heart. We invest as much in our people as our products. Our culture fosters transparency, collaboration, and continuous learning.

We value each other's differences and always look for opportunities to embed equity into the fabric of our work. We foster diversity, autonomy, and personal growth, and provide resources to support motivated self-leaders in continuous improvement.

You will work with high-impact, highly skilled, and intelligent experts motivated to drive impact and fulfill a meaningful mission. We empower you to unleash your full potential, do your best work, and thrive. Here you will be challenged to stretch yourself to achieve the seemingly impossible. Learn more about our culture .

Diversity, Equity and Inclusion: We're committed to creating an inclusive environment where people from all backgrounds can thrive. We believe that improving diversity, equity and inclusion is our collective responsibility, and this belief guides our DEI journey. Learn more about our DEI initiatives .

Accessibility Accommodations: Should you require any accommodation, we will work with you to meet your needs. Please reach out to .

Seniority level

  • Seniority levelMid-Senior level

Employment type

  • Employment typeFull-time

Job function

  • Job functionEngineering and Information Technology
  • IndustriesSoftware Development

Referrals increase your chances of interviewing at BenchSci by 2x

Get notified about new Machine Learning Engineer jobs in London, England, United Kingdom.

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 5 days ago

London, England, United Kingdom $35,000.00-$46,000.00 1 month ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 5 days ago

London, England, United Kingdom 3 months ago

London, England, United Kingdom 3 weeks ago

Hemel Hempstead, England, United Kingdom 1 week ago

London, England, United Kingdom 2 days ago

Junior Software Engineer (Integration Team)

London, England, United Kingdom 1 day ago

London, England, United Kingdom 1 week ago

AI Research Scientist (Sequential Decision Making)

London, England, United Kingdom 1 month ago

London, England, United Kingdom 4 days ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 3 weeks ago

London, England, United Kingdom £90,000.00-£120,000.00 1 month ago

London, England, United Kingdom 2 months ago

London, England, United Kingdom 4 months ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 4 months ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 2 months ago

London, England, United Kingdom 1 month ago

London, England, United Kingdom 1 day ago

London, England, United Kingdom 1 day ago

London, England, United Kingdom 33 minutes ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 1 month ago

Software Engineer - Go & Python, Ruby or C#

London, England, United Kingdom 3 weeks ago

Senior Machine Learning Engineer (must be UK based)

London, England, United Kingdom 1 week ago

London, England, United Kingdom 2 months ago

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.