Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer, AWS Generative AI Innovation Center

AWS EMEA SARL (UK Branch)
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Computer Vision Engineer

Artificial Intelligence

Senior Data Scientist - Computer Vision

Senior Data Scientist - Consumer Behaviour - exciting ‘scale up’ proposition

The Generative AI Innovation Center at AWS helps AWS customers accelerate the use of Generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

As a Machine Learning Engineer, you'll partner with technology and business teams to build solutions that surprise and delight our customers. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies.

We’re looking for Engineers and Architects capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.

AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services.

Key job responsibilities
- Collaborate with ML scientist and engineers to Research, design and develop cutting-edge generative AI algorithms to address real-world challenges
- Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership
- Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI
- Create and deliver reusable technical assets that help to accelerate the adoption of generative AI on AWS platform
- Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder
- Provide customer and market feedback to Product and Engineering teams to help define product direction.

About the team
The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and fine-tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently.

Diverse Experiences
Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
Mentorship and Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.


BASIC QUALIFICATIONS

- Bachelor’s degree in computer science, engineering, mathematics or equivalent
- Several years of non-internship experience in professional software development experience
- Several years of years of non-internship design or architecture (design patterns, reliability and scaling) of new and existing systems experience
- Experience coding in Python, R, Matlab, Java or other modern programming language
- Several years of relevant experience in developing and deploying large scale machine learning or deep learning models and/or systems into production, including batch and real-time data processing, model containerization, CI/CD pipelines, API development, model training and productionizing ML models
- Proven knowledge of deep learning and experience using Python and frameworks such as Pytorch, TensorFlow
- Strong communication skills, with attention to detail and ability to convey rigorous technical concepts and considerations to technical and non-technical audiences, including executive level stakeholders or clients

PREFERRED QUALIFICATIONS

- Masters or PhD degree in computer science, or related technical, math, or scientific field
- Proven knowledge of Generative AI and hands-on experience of building applications with large foundation models
- Experiences related to AWS services such as SageMaker, EMR, S3, DynamoDB and EC2, hands-on experience of building ML solutions on AWS

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.