National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Machine Learning Engineer

Faculty
Bournemouth
2 weeks ago
Create job alert

About Faculty At Faculty, we transform organisational performance through safe, impactful and human-centric AI.
With a decade of experience, we provide over 300 global customers with software, bespoke AI consultancy , and Fellows from our award winning Fellowship programme .
Our expert team brings together leaders from across government, academia and global tech giants to solve the biggest challenges in applied AI.
Should you join us, you’ll have the chance to work with, and learn from, some of the brilliant minds who are bringing Frontier AI to the frontlines of the world.
We operate a hybrid way of working Meaning that you'll split your time across client location, Faculty's Old Street office and working from home depending on the needs of the project. For this role, you can expect to be client-side for up to three days per week at times and working either from home or our Old Street office for the rest of your time.
What You'll Be Doing Working in our Defence business unit, you will design, build, and deploy production-grade software, infrastructure, and MLOps systems that leverage machine learning. The work you do will help our customers solve a broad range of high-impact problems in the defence and national security space - examples of which can be found here .
You are engineering-focused, with a keen interest and working knowledge of operationalised machine learning. You have a desire to take cutting-edge ML applications into the real world. You will develop new methodologies and champion best practices for managing AI systems deployed at scale, with regard to technical, ethical and practical requirements. You will support both technical and non-technical stakeholders to deploy ML to solve real-world problems. To enable this, we work in cross-functional teams with representation from commercial, data science, product management and design specialties to cover all aspects of AI product delivery.
The Machine Learning Engineering team is responsible for the engineering aspects of our customer delivery projects. As a Machine Learning Engineer, you’ll be essential to helping us achieve that goal by:
Building software and infrastructure that leverages Machine Learning;
Creating reusable, scalable tools to enable better delivery of ML systems;
Working with our customers to help understand their needs;
Working with data scientists and engineers to develop best practices and new technologies;
Implementing and developing Faculty’s view on what it means to operationalise ML software.
We’re a rapidly growing organisation, so roles are dynamic and subject to change. Your role will evolve alongside business needs, but you can expect your key responsibilities to include:
Working in cross-functional teams of engineers, data scientists, designers and managers to deliver technically sophisticated, high-impact systems.
Leading on the scope and design of projects.
Offering leadership and management to more junior engineers on the team.
Providing technical expertise to our customers.
Technical Delivery.
Who We're Looking For At Faculty, your attitude and behaviour are just as important as your technical skill. We look for individuals who can support our values, foster our culture, and deliver for our organisation.
We like people who combine expertise and ambition with optimism -- who are interested in changing the world for the better -- and have the drive and intelligence to make it happen. If you’re the right candidate for us, you probably:
Think scientifically, even if you’re not a scientist - you test assumptions, seek evidence and are always looking for opportunities to improve the way we do things.
Love finding new ways to solve old problems - when it comes to your work and professional development, you don’t believe in ‘good enough’. You always seek new ways to solve old challenges.
Are pragmatic and outcome-focused - you know how to balance the big picture with the little details and know a great idea is useless if it can’t be executed in the real world.
To succeed in this role, you’ll need the following - these are illustrative requirements and we don’t expect all applicants to have experience in everything (70% is a rough guide):
Understanding of and interest in the full machine learning lifecycle, including deploying trained machine learning models developed using common frameworks such as Scikit-learn, TensorFlow, or PyTorch.
Understanding of the core concepts of probability and statistics and familiarity with common supervised and unsupervised learning techniques.
Experience in Software Engineering including programming in Python.
Technical experience of cloud architecture, security, deployment, and open-source tools. Hands-on experience required of at least one major cloud platform.
Demonstrable experience with containers and specifically Docker and Kubernetes.
Comfortable in a high-growth startup environment.
Outstanding verbal and written communication.
Excitement about working in a dynamic role with the autonomy and freedom you need to take ownership of problems and see them through to execution.
What we can offer you: The Faculty team is diverse and distinctive, and we all come from different personal, professional and organisational backgrounds. We all have one thing in common: we are driven by a deep intellectual curiosity that powers us forward each day.
Faculty is the professional challenge of a lifetime. You’ll be surrounded by an impressive group of brilliant minds working to achieve our collective goals. Our consultants, product developers, business development specialists, operations professionals and more all bring something unique to Faculty, and you’ll learn something new from everyone you meet. You’ll also have the opportunity to make your mark on a high-growth start-up now poised to expand internationally.

#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.