Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior DevOps/MLOps Engineer

Neurolabs
London
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Founding AI Engineer

Senior / Lead Data Scientist - AI Agents - Outside IR35

Senior Machine Learning Engineer

Senior Data Scientist - Consumer Behaviour - exciting ‘scale up’ proposition

Senior Data Scientist - Financial Services - Outside IR35

Neurolabsis seeking a highly skilled and motivatedDevOps/MLOps Engineerto join our growing team. As a DevOps/MLOps Engineer, you will play a crucial role in maintaining and improving our infrastructure to support the development and deployment of our cutting-edge solutions for the retail automation industry.  As DevOps/MLOps Engineer at Neurolabs, you will play a crucial role in optimizing and managing our cloud infrastructure to support our data-intensive applications and machine learning workflows.

At Neurolabs, we specialize in democratizing Computer Vision technology, making it accessible to businesses of all sizes. With a commitment to pushing boundaries and solving complex problems, we have built a reputation for excellence in the retail automation industry. As a DevOps/MLOps Engineer, you will collaborate closely with our product and machine learning teams to streamline deployment processes, automate tasks, and enhance the overall efficiency of our operations.

Employment type:Full-time, permanent contract

Experience:Senior and Expert level

Annual Salary:£75,000 - £95,000

Responsibilities

  • Design, deploy, and manage scalable and reliable cloud infrastructure on a public cloud provider platform (e.g., AWS, GCP) to support our data-intensive applications and machine learning workflows.
  • Implement and maintain CI/CD pipelines for automated build, test, and deployment processes to ensure fast and efficient delivery of software updates and model deployments.
  • Develop and maintain monitoring, logging, and alerting systems to proactively identify and address performance issues, security vulnerabilities, and other operational concerns.
  • Collaborate with cross-functional teams (inc. machine learning and computer vision engineers) to optimize application performance, troubleshoot issues, and ensure high availability and uptime in accordance with SLAs.
  • Implement and enforce security best practices and compliance standards (e.g. Cyber Essentials, SOC2) to safeguard sensitive data and protect against potential threats and attacks.
  • Drive continuous improvement initiatives to optimize infrastructure costs, increase operational efficiency, and enhance overall reliability and performance.
  • Stay updated on emerging technologies, trends, and best practices in DevOps and MLOps to recommend and implement innovative solutions that drive business value.

Requirements

  • Proven experience as a DevOps/ MLOps Engineer, Site Reliability Engineer (SRE), or similar role, with a focus on cloud infrastructure and automation.
  • Strong proficiency in at least one cloud platform (AWS preferable) and hands-on experience with infrastructure as code (IaC) tools such as Terraform, CloudFormation, or equivalent.
  • Experience with containerization technologies (e.g., Docker).
  • Solid understanding of CI/CD concepts and experience with CI/CD tools (e.g., Github Actions) for automating software delivery pipelines.
  • Familiarity with machine learning concepts and frameworks (e.g. PyTorch, TensorFlow) and experience deploying and managing machine learning models in GPU production environments is a plus (e.g. BentoML, Valohai).
  • Experience with container orchestration platforms (e.g. Kubernetes) for deploying and managing services-based applications.
  • Strong problem-solving skills, attention to detail, and excellent communication and interpersonal skills.
  • Right to work in UK

Benefits

  • Hybrid work style - ability to work from home and the London office (at least 3 days per week in the office)
  • Flexible working hours
  • Equity options
  • 34 days annual leave (incl. public holidays in your residence country)
  • Bi-annual company retreat and bi-annual team meetings (workation)
  • Private medical insurance
  • Pension Plans
  • Cycle to Work Scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.