Senior Data Scientist (UK)

Atreides LLC.
Hereford
4 days ago
Create job alert
Job Title

Senior Data Scientist

Company Overview

Atreides helps organizations transform large and complex multi-modal datasets into information-rich geo-spatial data subscriptions that can be used across a wide spectrum of use cases. Currently, Atreides focuses on providing high-fidelity data solutions to enable customers to derive insights quickly.

Atreides transforms the chaos of petabyte-scale, all-domain data—land, air, sea, space, and cyber—into real-time operational clarity. We are a fast-moving, high-performance international scale company. We trust our team with autonomy, believing it leads to better results and job satisfaction. With a mission-driven mindset and entrepreneurial spirit, we are building something new and helping unlock the power of massive-scale data to make the world safer, stronger, and more prosperous.

Team Overview

We are a passionate team of technologists, data scientists, and analysts with backgrounds in operational intelligence, law enforcement, large multinationals, and cybersecurity operations. We obsess about designing products that will change the way global companies, governments and nonprofits protect themselves from external threats and global adversaries.

Position Overview

As a Senior Data Scientist at Atreides, you will lead deep analytical investigations that uncover structure, relationships, and operational insight from complex and high-volume data streams. You’ll architect workflows for pattern identification, anomaly detection, and interaction analysis across disparate data sources — often involving tracked entities, sensor feeds, or behavioral signals. You will also define and implement quality assurance methodologies that ensure analytical outputs are consistent and interpretable, collaborating closely with engineers to embed those checks in production systems. In addition, you’ll take point on high-value or urgent analytic requests from internal and external stakeholders, helping translate open-ended questions into reliable, data-driven answers.

Team Principles
  • Remain curious and passionate in all aspects of our work
  • Promote clear, direct, and transparent communication
  • Embrace the 'measure twice, cut once' philosophy
  • Value and encourage diverse ideas and technologies
  • Lead with empathy in all interactions
Responsibilities
  • Design and lead investigations into patterns, trends, and edge cases across filtered datasets.
  • Develop interaction models and fused analyses across multiple entity types and data modalities.
  • Design data validation, anomaly sanity checks, and analytical reliability frameworks to ensure analytical outputs behave correctly across varied data inputs.
  • Partner with solutions and data engineering to embed analytic logic into data pipelines and services.
  • Conduct bespoke, high-complexity analysis in support of customer-facing or operational needs.
  • Guide team best practices in Spark SQL usage, data documentation, and exploratory reproducibility.
Desired Qualifications
  • 5+ years of experience in data science, applied analytics, machine learning, or analytical R&D.
  • Advanced expertise in Python and distributed compute frameworks (e.g., Spark, Databricks), including strong proficiency in Spark SQL.
  • Strong background in statistical inference, anomaly detection, clustering, interaction modeling, or other analytical methods suited to large and heterogeneous datasets.
  • Experience working with multi-source, semi-structured, geospatial, or entity-centric data, with a strong ability to derive insight from complex operational environments.
  • Demonstrated success building data quality, validation, or reliability frameworks, particularly for analytical workflows or model-adjacent processes.
  • Ability to translate ambiguous analytical problems into structured, reproducible investigation plans.
  • Excellent communication, mentorship, and cross-functional collaboration skills.
  • Nice to have: Experience with MLflow, feature stores, or MLOps platforms; familiarity with model lifecycle management, reproducibility tooling, or production model monitoring.
Compensation and Benefits
  • Competitive salary
  • Comprehensive health, dental, and vision insurance plans
  • Flexible hybrid work environment
  • Additional benefits like flexible hours, work travel opportunities, competitive vacation time and parental leave

While meeting all of these criteria would be ideal, we understand that some candidates may meet most, but not all. If you're passionate, curious and ready to "work smart and get things done," we'd love to hear from you.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.