Senior Data Scientist (UK)

Atreides LLC.
Hereford
3 weeks ago
Create job alert
Job Title

Senior Data Scientist

Company Overview

Atreides helps organizations transform large and complex multi-modal datasets into information-rich geo-spatial data subscriptions that can be used across a wide spectrum of use cases. Currently, Atreides focuses on providing high-fidelity data solutions to enable customers to derive insights quickly.

Atreides transforms the chaos of petabyte-scale, all-domain data—land, air, sea, space, and cyber—into real-time operational clarity. We are a fast-moving, high-performance international scale company. We trust our team with autonomy, believing it leads to better results and job satisfaction. With a mission-driven mindset and entrepreneurial spirit, we are building something new and helping unlock the power of massive-scale data to make the world safer, stronger, and more prosperous.

Team Overview

We are a passionate team of technologists, data scientists, and analysts with backgrounds in operational intelligence, law enforcement, large multinationals, and cybersecurity operations. We obsess about designing products that will change the way global companies, governments and nonprofits protect themselves from external threats and global adversaries.

Position Overview

As a Senior Data Scientist at Atreides, you will lead deep analytical investigations that uncover structure, relationships, and operational insight from complex and high-volume data streams. You’ll architect workflows for pattern identification, anomaly detection, and interaction analysis across disparate data sources — often involving tracked entities, sensor feeds, or behavioral signals. You will also define and implement quality assurance methodologies that ensure analytical outputs are consistent and interpretable, collaborating closely with engineers to embed those checks in production systems. In addition, you’ll take point on high-value or urgent analytic requests from internal and external stakeholders, helping translate open-ended questions into reliable, data-driven answers.

Team Principles
  • Remain curious and passionate in all aspects of our work
  • Promote clear, direct, and transparent communication
  • Embrace the 'measure twice, cut once' philosophy
  • Value and encourage diverse ideas and technologies
  • Lead with empathy in all interactions
Responsibilities
  • Design and lead investigations into patterns, trends, and edge cases across filtered datasets.
  • Develop interaction models and fused analyses across multiple entity types and data modalities.
  • Design data validation, anomaly sanity checks, and analytical reliability frameworks to ensure analytical outputs behave correctly across varied data inputs.
  • Partner with solutions and data engineering to embed analytic logic into data pipelines and services.
  • Conduct bespoke, high-complexity analysis in support of customer-facing or operational needs.
  • Guide team best practices in Spark SQL usage, data documentation, and exploratory reproducibility.
Desired Qualifications
  • 5+ years of experience in data science, applied analytics, machine learning, or analytical R&D.
  • Advanced expertise in Python and distributed compute frameworks (e.g., Spark, Databricks), including strong proficiency in Spark SQL.
  • Strong background in statistical inference, anomaly detection, clustering, interaction modeling, or other analytical methods suited to large and heterogeneous datasets.
  • Experience working with multi-source, semi-structured, geospatial, or entity-centric data, with a strong ability to derive insight from complex operational environments.
  • Demonstrated success building data quality, validation, or reliability frameworks, particularly for analytical workflows or model-adjacent processes.
  • Ability to translate ambiguous analytical problems into structured, reproducible investigation plans.
  • Excellent communication, mentorship, and cross-functional collaboration skills.
  • Nice to have: Experience with MLflow, feature stores, or MLOps platforms; familiarity with model lifecycle management, reproducibility tooling, or production model monitoring.
Compensation and Benefits
  • Competitive salary
  • Comprehensive health, dental, and vision insurance plans
  • Flexible hybrid work environment
  • Additional benefits like flexible hours, work travel opportunities, competitive vacation time and parental leave

While meeting all of these criteria would be ideal, we understand that some candidates may meet most, but not all. If you're passionate, curious and ready to "work smart and get things done," we'd love to hear from you.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.