Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist (MLOps)

Cathcart Technology
London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Consumer Behaviour - exciting ‘scale up’ proposition

Senior Data Scientist

A world class Tech Organisation are looking for a Senior Data Scientist (MLOps) to join their division in London on a hybrid basis - opportunity to join a really innovative environment where you'll work with cutting edge technologies.

The company:

The organisation have been running very successfully now for over twenty years and are recognised as market leaders in their sector. They have a global footprint, and their products are used by millions of users every single day.

They are entering a really exciting period of growth, and are recruiting for a number of new positions to the business as they've got pretty big plans for the next few years - so it's genuinely a great time to join.

They thrive on a positive and welcoming culture making it a great place to work, so it probably comes as no surprise that they have really low attrition rates, as so many of their staff members have long and successful careers with the business.

The role:

You'll be joining a multi-disciplinary Senior squad of roughly 6 consisting of Principle and Senior Software Engineers, Data Engineers and Data Scientists, and will be tasked with supporting machine learning teams with deploying and maintaining models in production, ensuring they are reliable, scalable, and adhere to best practices.

You'll be involved optimizing model performance, mitigating risks, and refining deployment pipelines to meet governance and regulatory standards. You will collaborate with the ML platform team advocating for effective use of tools like feature stores and model registries.

This role acts as the glue between data science and platform engineering teams, fostering MLOps best practices, addressing bottlenecks in inference and retraining pipelines, and resolving production issues to enhance system robustness and cost efficiency.

Key skills and experience:

** Prior Senior Data Scientist with Machine Learning experience

** Strong understanding and experience with ML models and ML observability tools

** Strong Python and SQL experience

** Spark / Apache Airflow

** ML frame work experience (PyTorch / TensorFlow / Scikit-Learn)

** Experience with cloud platforms (preferably AWS)

** Experience with containerisation technologies

Useful information:

Their offices are based in central London where they support hybrid working, you'll be expected onsite about twice a week, however they are really flexible about what days.

They're offering a very competitive salary from £70,000 - £95,000, depending on experience with great benefits to match (which include multiple bonuses and more!).

If you're keen to

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.