Senior Data Scientist (MLOps)

Cathcart Technology
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - National Security (TIRE) based in Cheltenham/Hybrid

A world class Tech Organisation are looking for a Senior Data Scientist (MLOps) to join their division in London on a hybrid basis - opportunity to join a really innovative environment where you'll work with cutting edge technologies.

The company:

The organisation have been running very successfully now for over twenty years and are recognised as market leaders in their sector. They have a global footprint, and their products are used by millions of users every single day.

They are entering a really exciting period of growth, and are recruiting for a number of new positions to the business as they've got pretty big plans for the next few years - so it's genuinely a great time to join.

They thrive on a positive and welcoming culture making it a great place to work, so it probably comes as no surprise that they have really low attrition rates, as so many of their staff members have long and successful careers with the business.

The role:

You'll be joining a multi-disciplinary Senior squad of roughly 6 consisting of Principle and Senior Software Engineers, Data Engineers and Data Scientists, and will be tasked with supporting machine learning teams with deploying and maintaining models in production, ensuring they are reliable, scalable, and adhere to best practices.

You'll be involved optimizing model performance, mitigating risks, and refining deployment pipelines to meet governance and regulatory standards. You will collaborate with the ML platform team advocating for effective use of tools like feature stores and model registries.

This role acts as the glue between data science and platform engineering teams, fostering MLOps best practices, addressing bottlenecks in inference and retraining pipelines, and resolving production issues to enhance system robustness and cost efficiency.

Key skills and experience:

** Prior Senior Data Scientist with Machine Learning experience

** Strong understanding and experience with ML models and ML observability tools

** Strong Python and SQL experience

** Spark / Apache Airflow

** ML frame work experience (PyTorch / TensorFlow / Scikit-Learn)

** Experience with cloud platforms (preferably AWS)

** Experience with containerisation technologies

Useful information:

Their offices are based in central London where they support hybrid working, you'll be expected onsite about twice a week, however they are really flexible about what days.

They're offering a very competitive salary from £70,000 - £95,000, depending on experience with great benefits to match (which include multiple bonuses and more!).

If you're keen to

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.