Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist (MLOps)

City of London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

A world class Tech Organisation are looking for a Senior Data Scientist (MLOps) to join their division in London on a hybrid basis - opportunity to join a really innovative environment where you'll work with cutting edge technologies.

The company:

The organisation have been running very successfully now for over twenty years and are recognised as market leaders in their sector. They have a global footprint, and their products are used by millions of users every single day.

They are entering a really exciting period of growth, and are recruiting for a number of new positions to the business as they've got pretty big plans for the next few years - so it's genuinely a great time to join.

They thrive on a positive and welcoming culture making it a great place to work, so it probably comes as no surprise that they have really low attrition rates, as so many of their staff members have long and successful careers with the business.

The role:

You'll be joining a multi-disciplinary Senior squad of roughly 6 consisting of Principle and Senior Software Engineers, Data Engineers and Data Scientists, and will be tasked with supporting machine learning teams with deploying and maintaining models in production, ensuring they are reliable, scalable, and adhere to best practices.

You'll be involved optimizing model performance, mitigating risks, and refining deployment pipelines to meet governance and regulatory standards. You will collaborate with the ML platform team advocating for effective use of tools like feature stores and model registries.

This role acts as the glue between data science and platform engineering teams, fostering MLOps best practices, addressing bottlenecks in inference and retraining pipelines, and resolving production issues to enhance system robustness and cost efficiency.

Key skills and experience:

** Prior Senior Data Scientist with Machine Learning experience

** Strong understanding and experience with ML models and ML observability tools

** Strong Python and SQL experience

** Spark / Apache Airflow

** ML frame work experience (PyTorch / TensorFlow / Scikit-Learn)

** Experience with cloud platforms (preferably AWS)

** Experience with containerisation technologies

Useful information:

Their offices are based in central London where they support hybrid working, you'll be expected onsite about twice a week, however they are really flexible about what days.

They're offering a very competitive salary from £70,000 - £95,000, depending on experience with great benefits to match (which include multiple bonuses and more!).

If you're keen to find out more, please reach out to Matthew MacAlpine at Cathcart Technology

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.