Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist, Japan Retail Science

Amazon
London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist (Machine Learning & Advanced Analytics)

Senior Data Scientist (Machine Learning & Advanced Analytics)

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist, Japan Retail Science

The JP Retail Science team is looking for a Senior Data Scientist to lead the science development of deal recommendation.

Deals and promotion is one of the key tools to help vendors grow their business on Amazon. We want to leverage science to evaluate promotion scenarios, ROI and help vendors find the best promotion that fits their needs.

In this position, you will be expected to review existing literature, analyze data and prototype predictive analytics for promotion. You will have access to our vast historical transaction data and vendor tools interaction to formulate hypotheses, build prototypes and train new models for deal promotion and evaluation.

You will work within an international team of scientists and engineers, all based in Tokyo, Japan. We are a team that thrives on growth, both personal and professional. Engage in academic collaborations, spark innovation in hackathons, and expand your horizons with conference visits.

Key job responsibilities

As a Senior Data Scientist, your responsibilities will be:

  1. Lead the analysis, prototyping and implementation of recommendation models for Amazon vendors.
  2. Work closely with other scientists and engineers to review and improve your model design proposals.
  3. Partner with product managers and other business stakeholders, documenting and explaining your progress in business reviews, and being the technical voice in charge of your product.
  4. Spot opportunities for innovation and scientific publications, and publish to internal or external conferences.
  5. Be active in the community, participating in science education/growth activities.
  6. Keep up to date with scientific development in the field.

About the team

JP Retail Science is a team of Scientists, Science Managers, and Business Intelligence Engineers. The team's charter is to develop science-based models to help all Amazon vendors maximize their growth. From our base office in Tokyo, Japan, we build for all vendors worldwide, and collaborate with other science teams in Europe and the US.

Because we are not tied to a specific technology, such as Search or Alexa, our projects and the science required change dynamically depending on the vendor needs. In the past we have worked on initiatives drawing from multiple disciplines, including causal inference, LLM, forecasting, and optimization.

A large fraction of the team consists of former academic researchers, and we maintain that culture through collaboration with universities, exchange programs, and conference participation.

BASIC QUALIFICATIONS

- 5+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
- 4+ years of data scientist or similar role involving data extraction, analysis, statistical modeling and communication experience

PREFERRED QUALIFICATIONS

- 2+ years of data visualization using AWS QuickSight, Tableau, R Shiny, etc. experience
- Experience managing data pipelines
- Experience as a leader and mentor on a data science team
- Knowledge of AWS tech stack (e.g., AWS Redshift, S3, EC2, Glue)

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visitthis linkfor more information.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.