Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist

Endava
City of London
21 hours ago
Create job alert
Company Description

Technology is our how. And people are our why. For over two decades, we have been harnessing technology to drive meaningful change. By combining world-class engineering, industry expertise and a people-centric mindset, we consult and partner with leading brands from various industries to create dynamic platforms and intelligent digital experiences that drive innovation and transform businesses. From prototype to real-world impact - be part of a global shift by doing work that matters.

Role Overview

The Lead Data Scientist is responsible for developing and deploying advanced AI/ML models, leveraging statistical techniques, machine learning, and deep learning to extract actionable insights. This role requires strong expertise in Python-based AI/ML development, big data processing, and cloud-based AI platforms (Databricks, Azure ML, AWS SageMaker, GCP Vertex AI).

Key ResponsibilitiesData Exploration & Feature Engineering
  • Perform thorough Exploratory Data Analysis (EDA) and identify key variables, patterns, and anomalies.
  • Engineer and select features for optimal model performance, leveraging domain understanding.
Machine Learning & Statistical Modelling
  • Implement both classical ML methods (regression, clustering, time-series forecasting) and advanced algorithms (XGBoost, LightGBM).
  • Address computer vision, NLP, and generative tasks using PyTorch, TensorFlow, or Transformer-based models.
Model Deployment & MLOps
  • Integrate CI/CD pipelines for ML models using platforms like MLflow, Kubeflow, or SageMaker Pipelines.
  • Monitor model performance over time and manage retraining to mitigate drift.
Business Insights & Decision Support
  • Communicate analytical findings to key stakeholders in clear, actionable terms.
  • Provide data-driven guidance to inform product strategies and business initiatives.
Ethical AI & Governance
  • Ensure compliance with regulations (GDPR) and implement bias mitigation.
  • Employ model explainability methods (SHAP, LIME) and adopt best practices for responsible AI
Qualifications
  • Technical Skills
  • Programming: Python (NumPy, Pandas), R, SQL.
  • ML/DL Frameworks: Scikit-learn, PyTorch, TensorFlow, Hugging Face Transformers.
  • Big Data & Cloud: Databricks, Azure ML, AWS SageMaker, GCP Vertex AI.
  • Automation: MLflow, Kubeflow, Weights & Biases for experiment tracking and deployment.
  • Architectural Competencies
  • Awareness of data pipelines, infrastructure scaling, and cloud-native AI architectures.
  • Alignment of ML solutions with overall data governance and security frameworks.
  • Soft Skills
  • Critical Thinking: Identifies business value in AI/ML opportunities.
  • Communication: Distils complex AI concepts into stakeholder-friendly insights.
  • Leadership: Mentors junior team members and drives innovation in AI.
Additional Information

Discover some of the global benefits that empower our people to become the best version of themselves:

  • Finance: Competitive salary package, share plan, company performance bonuses, value-based recognition awards, referral bonus;
  • Career Development: Career coaching, global career opportunities, non-linear career paths, internal development programmes for management and technical leadership;
  • Learning Opportunities: Complex projects, rotations, internal tech communities, training, certifications, coaching, online learning platforms subscriptions, pass-it-on sessions, workshops, conferences;
  • Work-Life Balance: Hybrid work and flexible working hours, employee assistance programme;
  • Health: Global internal wellbeing programme, access to wellbeing apps;
  • Community: Global internal tech communities, hobby clubs and interest groups, inclusion and diversity programmes, events and celebrations.

At Endava, we're committed to creating an open, inclusive, and respectful environment where everyone feels safe, valued, and empowered to be their best. We welcome applications from people of all backgrounds, experiences, and perspectives-because we know that inclusive teams help us deliver smarter, more innovative solutions for our customers. Hiring decisions are based on merit, skills, qualifications, and potential. If you need adjustments or support during the recruitment process, please let us know.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Consumer Behaviour - exciting ‘scale up’ proposition

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.