Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Science Consultant - Credit Decisioning

Experian
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Consultant, Data Science & AI, Data & Analytics, Belfast, Derry/Londonderry

Senior Data Scientist

Senior Data Scientist - Fixed Term Contract

Senior Data Scientist - Fixed Term Contract

Junior Data Scientist (9624)

Junior Data Scientist - Reply

Job Description

We have a new vacancy for an experiencedSenior Data Science Consultantwithcoding expertise in Python or SASto join our Analytics team, working with our cloud-based Ascend platform You will partner with clients to understand their business, identify what data is required and how clients can best use Experian data models and analytics to improve business outcomes.

Responsibilities include:

  • Design analytics solutions to client's problems in any area of consumer lending and credit risk management, using Experian analytics solutions.
  • Engage in a consultative way with the client, to identify problems and define, design and deliver analytics solutions, with expertise in credit risk modelling and optimisation techniques.
  • Present proposals to clients for analytics solutions, including recommendations.
  • Provide consultancy on the potential 'bigger picture' strategies.
  • Co-ordinate with Experian's Analytics Pre-Sales team to contribute to sales opportunities and support the conversion of sales prospects.


Qualifications

  • Data science experience with expertise in building decisioning or credit risk models using Python or SAS
  • Applied modelling and analytics experience to lead business decisions
  • Expertise in credit risk decisioning.
  • Deep coding knowledge in Python with SAS or R.
  • Good stakeholder management skills.
  • Subject matter expert on the mechanics of consumer lending (risk, data usag, outcomes)
  • Knowledge of Cloud / AWS
  • Product strategy experience desirable but not essential.



Additional Information

Benefits package includes:

  • Hybrid working
  • Great compensation package
  • Core benefits include pension, bupa healthcare, sharesave scheme and more
  • 25 days annual leave with 8 bank holidays and 3 volunteering days. You can purchase additional annual leave.

Our uniqueness is that we celebrate yours. Experian's culture and people are important differentiators. We take our people agenda very seriously and focus on what matters; DEI, work/life balance, development, authenticity, engagement, collaboration, wellness, reward and recognition, volunteering... the list goes on. Experian's people first approach is award winning; Great Place To Work™ in 24 countries, FORTUNE Best Companies to work and Glassdoor Best Places to Work (globally 4.4 Stars) to name a few. Check out Experian Life on social or our Careers Site to understand why.

Experian is proud to be an Equal Opportunity and Affirmative Action employer. Innovation is a critical part of Experian's DNA and practices, and our diverse workforce drives our success. Everyone can succeed at Experian and bring their whole self to work, irrespective of their gender, ethnicity, religion, colour, sexuality, physical ability or age. If you have a disability or special need that requires accommodation, please let us know at the earliest opportunity.

#LI-DSI #LI-Hybrid

Experian Careers - Creating a better tomorrow together

Find out what its like to work for Experian by clicking here

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.