Senior Data Engineer

Phoenix Group Holdings
Wythall
3 days ago
Create job alert

We have an incredible opportunity to join us here at Phoenix as a Senior Data Engineer in our Engineering & Delivery function with Group IT

Job Type: Permanent

Location:This role could be based in either our Wythall, Telford or Edinburgh offices with time spent working in the office and at home.

Flexible working: All of our roles are open to part-time, job-share and other types of flexibility. We will discuss what is important to you and balancing this with business requirements during the recruitment process. 

Closing Date:24/04/2025

Salary and benefits:£45,000 - £60,000 plus 16% bonus up to 32%, private medical cover, 38 days annual leave, excellent pension, 12x salary life assurance, career breaks, income protection, 3x volunteering days and much 

Who are we?

We want to be the best place that any of our 6,600 colleagues have ever worked. 
 
We’re the UK’s largest long-term savings and retirement business. We offer a range of products across our market-leading brands, Standard Life, SunLife, Phoenix Life and ReAssure. Around 1 in 5 people in the UK has a pension with us. We’re a FTSE 100 organisation that is tackling key issues such as transitioning our portfolio to net zero by 2050, and we’re not done yet. 

The Role

We are seeking a Senior Data Engineer to join our Engineering & Delivery function within Group IT, This role offers candidates with a strong background in data & analytics engineering the opportunity to inform operational decisions and influence change that can really make a different to our customer experience. 

As a Senior Data Engineer, you will be responsible for designing, implementing, and optimizing our analytics solutions on cloud platforms, with a strong emphasis on Databricks. You will work closely with cross-functional teams, including data scientists, analysts, and software engineers, to ensure the seamless integration of data and analytics capabilities into our business processes.

Key Responsibilities:

Design, implement, and optimize analytics infrastructure on cloud platforms such as including Azure Utilize best practices for data storage, processing, and retrieval in cloud environments. Implement and manage data pipelines for efficient data processing and analysis. Serve as the subject matter expert on Databricks, ensuring effective utilization of the platform for analytics and data science activities. Develop and maintain Databricks notebooks for data exploration, feature engineering, and model development. Optimize Databricks workflows for performance and scalability. Collaborate with data engineering teams to integrate diverse data sources into the analytics environment. Implement and maintain data connectors and ETL processes for seamless data flow. Identify and address performance bottlenecks in analytics processes and queries. Implement optimizations for large-scale data processing and analysis. Implement security best practices to safeguard sensitive data. Ensure compliance with data governance and regulatory requirements. Work closely with data scientists, analysts, and other stakeholders to understand analytics requirements. Create comprehensive documentation for analytics infrastructure and processes.

Qualifications:

Proven experience as an Data Engineer, with a focus on cloud technologies and Databricks. Strong proficiency in cloud platforms (AWS, Azure, or Google Cloud) and related analytics services. Expertise in building and optimizing data pipelines and workflows. In-depth knowledge of Databricks, including notebook development and optimization. Solid programming skills in languages such as Python, Scala, or SQL. Experience with data modeling, warehousing, and analytics technologies. Strong problem-solving and analytical skills. Excellent communication and collaboration skills.

We want to hire the whole version of you.

We are committed to ensuring that everyone feels accepted and welcome applicants from all backgrounds. If your experience looks different from what we’ve advertised and you believe that you can bring value to the role, we’d love to hear from you. 

 If you require any adjustments to the recruitment process, please let us know so we can help you to be at your best. 

Please note that we reserve the right to remove adverts earlier than the advertised closing date. We encourage you to apply at the earliest opportunity.

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Snowflake & AWS

Senior Data Engineer

Senior Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.