Senior Data Engineer

Partnerize
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer - Databricks

Senior Data Engineer_London_Hybrid

Senior Data Engineer - Snowflake - £100,000

Senior Data Scientist

Senior Data Scientist

Who We Are:

The partnership channel offers scale and automation on a pay-for-performance model that delivers the operating leverage necessary for brand survival. Partnerize empowers marketers with technology built to discover, engage, and convert audiences, at scale, all while maintaining brand safety and control.

Why Join Us?

Our commitment to growing partnerships doesn't end with our clients. Our employees are carefully selected to be a part of our company because they emulate a carefully crafted and practiced set of core values that define us and our business. Joining Partnerize means joining a company that sincerely values your talent, expertise, and passion. We strive each day to hire and retain only the best. Doing so affords us the opportunity to be the best in the business, to exceed our clients' expectations, to innovate, to teach—and most importantly—to earn and maintain our clients’ loyalty.

The things you care about

At the heart of our platform, we track performance marketing data and build solutions to turn this data into useful information for our customers. We work with a lot of data, generating over a billion events across our infrastructure daily. We aim to make as much of this data available in real-time as possible, which is no mean feat at this scale!

We are looking for a highly skilled Senior Data Engineer to join our team. The ideal candidate should have extensive experience with Google Cloud Platform, Google BigQuery, Apache Airflow, Airbyte, HDFS, Apache Spark, and Hive.

As a Senior Data Engineer at Partnerize, you will:

Design, build, and maintain data pipelines using Google Cloud Platform, Google BigQuery, Apache Airflow, Airbyte, HDFS, Kafka and Apache Spark Integrate large sets of data from numerous internal and external sources Ensure the reliability and performance of data systems by implementing best practices for data quality, security, and scalability Collaborate with cross-functional teams to understand business objectives and translate them into technical solutions Collaborate with data scientists and other stakeholders to support data-driven decision making and implement data solutions Design and implement data models and explain trade-offs of different modeling approaches Stay up to date with the latest developments and technologies in the data engineering field

You are a data engineer with:

Strong experience with Google Cloud Platform, Google BigQuery, Apache Airflow, Airbyte, HDFS, and Apache Spark Experience with data warehousing, data modeling, and ETL data pipelines design, implementation, and maintenance Good knowledge of software engineering practices and hands-on experience with writing Python production-level code Good knowledge of SQL and approaches to query optimization Strong understanding of data security and privacy principles Excellent problem-solving and critical thinking skills Strong communication and collaboration skills

We hope you have:

Good understanding of CI/CD Experience of working in an Agile environment and understanding of key agile practices Experience with data management for BI tools like Tableau

UK Benefits & Perks

25 days holiday in addition to bank holidays  Enhanced Parental Leave: 6 months full pay for birth parent, 4 weeks non-birth parent at full pay after one year employment 5 extra 'Partnerize Parental Days' each year Private Medical Insurance through Bupa  Enhanced pension contributions Cycle to Work scheme  Eye Care Vouchers  Life Assurance Enhanced Wellness Program including access to EAP, Wellness Coaching & Wellness Fridays program Regular company events and activities

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.