Senior Data Annotation Analyst – Dialogue Labeling and Annotation Management

Bloomberg
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Expert

Senior Machine Learning Engineer - AI Data Trainer

Senior Machine Learning Engineer - AI Data Trainer

Senior Machine Learning Engineer

Data Scientist (Operational Domain Intelligence)

Senior/Lead Health Data Scientist – Statistical Genetics

Senior Data Annotation Analyst – Dialogue Labeling and Annotation Management

London

Posted Jul 2, 2024 - Requisition No. 126289

Bloomberg runs on data. Our products are fueled by powerful information. We combine data and context to paint the whole picture for our clients, around the clock – from around the world. In Data, we are responsible for delivering this data, news and analytics through innovative technology - quickly and accurately. We optimize the value of our data by combining our domain and technical expertise to make our data fit-for-purpose, timely and accurate. We apply our problem-solving skills to identify innovative workflow efficiencies, and we implement technology solutions to better handle our data.

The Role:

As a Senior Data Annotation Analyst on our Dialogue Labeling and Annotation Management team (DLAM), you will be responsible for project coordination, prioritization, mentorship, coaching, and execution of strategic business objectives. Your key partners will be our AI Community Engineering teams and our Core Product team within Community. You will be the foundation of the DLAM team and will help support the development of machine learning models and AI technology, such as, AI assistance with security detection, transcription of voice data, classification, and more. We’ll trust you to become a product owner and understand the downstream usage of our data and use that knowledge to advise potential annotation changes. As a data annotation specialist, you will also be responsible for annotation efforts by in house contract workers. You will develop deep domain expertise in text annotation of financial instruments and will perform quality evaluation of annotation results produced by yourself and contract workers. This role will require you to collaborate across data teams as your team will serve as a resource for outside teams that require expertise and training in annotation management. Doing so will require critical thinking and collaboration across Data, Product, and Engineering teams.

You’ll need to have:

*Please note we use years of experience as a guide, but we certainly will consider applications from all candidates who are able to demonstrate the skills necessary for the role.

Bachelor's degree in Finance, Economics, Linguistics. or relevant degree/equivalent experience 4+ years of data management experience, for example improving data quality, accuracy, efficiency, or timeliness* Demonstrated project, work experience, or coursework that shows your interest and knowledge in the financial markets or human in the loop workflows Demonstrated interest or experience with data analysis Excellent written, communication, and presentation skills Strong organizational skills with the ability to balance multiple projects simultaneously A high-level proficiency with business intelligence/data visualization tools, preferably QlikSense Strong desire to structure and systemize processes, and motivation to push both existing and new workflows in that direction

We’d love to see:

Experience working with annotation schemas, edge cases, guideline development and maintenance, and semantic analysis Experience transforming workflows into a more timely and efficient process Experience working with human in the loop workflows Experience using native language skills to capture various forms of linguistic utterances with high accuracy Experience with one or more of the following asset classes: Fixed Income, Equities, and Foreign Exchange products

Does this sound like you?

Apply if you think we're a good match. We'll get in touch to let you know what the next steps are!

Bloomberg is an equal opportunity employer and we value diversity at our company. We do not discriminate on the basis of age, ancestry, color, gender identity or expression, genetic predisposition or carrier status, marital status, national or ethnic origin, race, religion or belief, sex, sexual orientation, sexual and other reproductive health decisions, parental or caring status, physical or mental disability, pregnancy or parental leave, protected veteran status, status as a victim of domestic violence, or any other classification protected by applicable law.

Bloomberg provides reasonable adjustment/accommodation to qualified individuals with disabilities. Please tell us if you require a reasonable adjustment/accommodation to apply for a job or to perform your job. Examples of reasonable adjustment/accommodation include but are not limited to making a change to the application process or work procedures, providing documents in an alternate format, using a sign language interpreter, or using specialized equipment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.