Scientist, Data Science

Second Renaissance
Cambridge
1 week ago
Create job alert

Our mission is to restore cell health and resilience through cell rejuvenation to reverse disease, injury, and the disabilities that can occur throughout life.

For more information, see our website at altoslabs.com.

## Our Value
Our Single Altos Value: Everyone Owns Achieving Our Inspiring Mission.

## Diversity at Altos
We believe that diverse perspectives are foundational to scientific innovation and inquiry. At Altos, exceptional scientists and industry leaders from around the world work together to advance a shared mission. Our intentional focus is on Belonging, so that all employees know that they are valued for their unique perspectives. We are all accountable for sustaining a diverse and inclusive environment.

- ## What You Will Contribute To Altos

We have an opportunity available for a Data Scientist to work in the field of cells, genomics and related areas.

Responsibilities

- Generate insights and models from multi-omics datasets (using public and internal data) to understand patterns, trends and relationships within data to inform decision-making and solve problems.

  • Design, develops and programs methods, processes, and systems to extract, consolidate and analyze unstructured, diverse “big data” sources to generate actionable insights.
  • Build databases and is responsible for the curation of Data, including experimental data management.
  • Extracting knowledge, insights and predictions from data using statistical methods, machine learning and data visualization.
  • Work with scientists to identify optimal ways to prepare, annotate, store and navigate their datasets, including data application design and improvement.
  • Define and document best practices for capturing and entering experimental metadata, and educate scientists and collaborators about these standards.
  • Build pipelines for quality control, processing and analysis of raw targeted and un-targeted datasets.
  • Develops and codes software programs and leverages algorithms and methodologies being developed by the scientific community for use cases of relevance to Altos Labs.
  • Stay current with and adopt emergent analytical methodologies, tools and applications to ensure fit-for-purpose and impactful approaches.
  • Partner closely with the Lab scientists and researchers to identify opportunities for data and insight mining to accelerate research.
  • Embed analyses and visualizations in automated reports.

    ## Who You Are

    #### Minimum Qualifications

    - PhD in interdisciplinary quantitative science such as Biology, Chemistry, Computer Science, Physics, etc.
  • Relevant work experience in either an academic or industry setting.
  • Working knowledge of cell biology and experience in large scale data analysis and statistical modeling on datasets like RNA-seq, ATAC-seq, protein network, pathways, etc.
  • Proven track record of completed scientific projects as evidenced by publications and preprints.
  • Strong breadth and expertise in Statistical analysis, machine learning, data visualization, programming (Python, R, etc.), data cleaning and data manipulation.
  • Tools: Python, R, SQL, TensorFlow, Scikit-learn, Tableau, Power BI.
  • Ability to generate high quality ideas and be self-driven to explore.
  • Strong experience in programming and comfortable modifying existing code-base. Experience with Python, R data cleaning and data manipulation or other related scientific languages.
  • Willing to work in a collaborative environment and share periodic updates across the company.

    #### Preferred Qualifications

    - Strong and demonstrable experience working in an AWS compute environment is a major advantage.
  • Experience integrating prior knowledge from public databases (e.g., KEGG) into omics data analysis pipelines.

    The salary range for Cambridge, UK:

    - Scientist I, Data Science: £64,600 - £87,400
  • Senior Scientist I, Data Science: £88,000 - £132,000

    Exact compensation may vary based on skills, experience, and location.

    Before submitting your application:

    - Please click here to read the Altos Labs EU and UK Applicant Privacy Notice ( bit.ly/eu_uk_privacy_notice )

    - This Privacy Notice is not a contract, express or implied and it does not set terms or conditions of employment.

    ## What We Want You To Know

    We are a culture of collaboration and scientific excellence, and we believe in the values of inclusion and belonging to inspire innovation.

    Altos Labs provides equal employment opportunities to all employees and applicants for employment and prohibits discrimination and harassment of any type without regard to race, color, religion, age, sex, national origin, disability status, genetics, protected veteran status, sexual orientation, gender identity or expression, or any other characteristic protected by federal, state or local laws.

    This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

    Altos currently requires all employees to be fully vaccinated against COVID-19, subject to legally required exemptions (e.g., due to a medical condition or sincerely-held religious belief).

    Thank you for your interest in Altos Labs where we strive for a culture of scientific excellence, learning, and belonging.

    Note: Altos Labs will not ask you to download a messaging app for an interview or outlay your own money to get started as an employee. If this sounds like your interaction with people claiming to be with Altos, it is not legitimate and has nothing to do with Altos. Learn more about a common job scam at https://www.linkedin.com/pulse/how-spot-avoid-online-job-scams-biron-clark/
    #J-18808-Ljbffr

Related Jobs

View all jobs

Senior Research Data Scientist

Lead Data Scientist - Recommender Systems

Data Scientist Graduate

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Drug Discovery...

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.