Scientific Software Engineer

Exeter
1 year ago
Applications closed

Related Jobs

View all jobs

ML Engineer / Data Scientist

Principal Computer Vision Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Interim Senior Scientific Software Engineer
Location: Exeter / Hybrid
Pay Rate: £500 per day (umbrella)

About the Role:
A public sector body is seeking an Interim Senior Scientific Software Engineer to join a cross-organisational team working on an AI-driven project. The primary responsibility of this role is to provide technical leadership and coordination across a team of Scientific Software Engineers and Data Scientists, acting as Scrum Master to support effective agile delivery. This position focuses on enhancing the team's technical leadership and agile practices, complementing the existing scientific leadership.

Key Responsibilities:

Provide technical leadership to deliver project milestones in collaboration with the project manager and team members.
Act as Scrum Master, facilitating agile ceremonies and supporting the team to achieve optimal workflow.
Lead the development of technical plans and roadmaps for the FastNet capability.
Collaborate closely with the project manager to ensure effective agile delivery practices are in place.
Key Skills and Experience Required:

Expert knowledge of Python and experience with quality assurance practices, including testing and documentation.
Proficient in agile development practices, particularly with the Scrum framework.
Knowledge of machine learning workflow development and deployment on cloud platforms such as AzureML.
Familiarity with handling large structured and unstructured datasets, ideally with geospatial data

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.