Scientific Software Developer - F1 Motorsport

Data Science Talent
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Machine learning specialist computer

Data Scientist

Environmental Data Scientist/Hydrologist

Senior Environmental Data Scientist/Hydrologist

Applied AI and Machine Learning Scientist - Senior Associate

Scientific Software Developer - F1 Motorsport

Location: South East England


-----


2.62 seconds.That's how long it takes to service an entire F1 racing car at a pit stop.


2 weeks.That's how quickly your contributions can make a visible impact on the track.

Join one of the world's leading Formula 1 teams, where every role plays a pivotal part in enhancing car performance and speed. Here, the collective effort truly outpaces the sum of its parts.


-----


The Role


As a Scientific Software Developer within the Data Science team, you'll provide essential software engineering support focused on data applications and systems. Your work will involve:


  • Engaging with Data:Handle data from advanced aerodynamic testing environments, including wind tunnels, computational fluid dynamics, and on-track testing. Collaborate with the Vehicle Performance Group (VPG) to delve into data from race tracks and simulation settings.


  • Software Development:Design, develop, and optimise software applications and tools tailored to the needs of their data pipelines.


  • Algorithm Creation:Develop algorithms that transform raw data into actionable insights, directly influencing data-driven decisions.


  • Coding Excellence:Oversee and enforce coding standards and best practices within the data science group to ensure high-quality, maintainable code.


  • Collaborative Problem-Solving:Work closely with data scientists, engineers, and stakeholders to understand requirements and translate them into effective software solutions.


-----


Your Profile


  • Bachelor’s or Master’s degree in Computer Science, Software Engineering, or a related field. Advanced degrees or coursework in a scientific discipline are advantageous.


  • Proven experience in software development within data-intensive environments.


  • Proficiency in Python and its scientific computing libraries (NumPy, SciPy, pandas, scikit-learn) is essential, as well as knowledge of Parallel and High Performance Computing.


  • Experience in creating algorithms to derive insights from data and developing robust data pipelines for efficient processing, storage, and retrieval.


  • Adept at quickly understanding and addressing software or computer science challenges, grasping underlying mechanics to create effective solutions.


-----


Apply Now


Be part of a world-class team where your contributions can drive tangible results seen by millions worldwide. To explore this opportunity further and learn about the rewards on offer, click the 'Easy Apply' button.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.