Science Analytics and Reporting Specialist

Reading
9 months ago
Applications closed

Related Jobs

View all jobs

Informatics Data Science Manager

Informatics Data Science Manager

Artificial Intelligence (AI) Consultant

Artificial Intelligence (AI) Consultant

Artificial Intelligence (AI) Consultant

Senior Marketing Data Scientist

Science Analytics and Reporting Specialist

Location: RG7 4PR, located between Reading and Basingstoke, with free onsite parking.

Package: £47,860 - £70,200 (depending on your suitability, qualifications, and level of experience)

Working pattern: AWE operates a 9-day working fortnight. We will consider flexible working requests so that your work may fit in with your lifestyle. Just let us know your preferred working pattern on your application.

Let us introduce the role

The Science Business Operations team at AWE is committed to driving excellence and innovation in our business processes. We are seeking a motivated individual with a growth mindset to join us as a Science Analytics & Reporting Specialist. This role offers the opportunity to make a significant impact on our reporting and analytics capabilities, supporting key stakeholders in making informed business decisions.

As a Science Analytics & Reporting Specialist, you will collaborate closely with all Science areas to develop delivery performance indicators and ensure effective reporting across all levels of the business. You will coordinate the development and management of reporting and metrics across various aspects of our business operations, including resourcing, finances, and delivery. This role requires regular engagement with stakeholders both within science and across the broader business.

Who are we looking for?

We do need you to have the following:

Proficiency in Microsoft products including Power Automate and PowerApps.

Understanding and experience in data engineering, encompassing ETL processes, data quality, integrity, and security.

Experience with reporting tools such as Power BI.

Experience with EPBVS (Enterprise Planning & Budgetary Cloud Service).

Strong proficiency in SQL and other data querying languages.

Proven analytical and critical thinking skills, with the ability to interpret complex data and present findings to a diverse audience

Everyone who works at AWE brings unique skills and perspectives to the table. We recognise that great people don't always 'tick every box'. That's why we focus on your potential, your fit with our values, your transferable skills as well as your experience. Even if you don't meet every point below, but you feel that this role and AWE are a great fit for you, please go ahead and apply, we'd love to receive your application.

Whilst not to be considered a tick list, we'd like you to have experience in some of the following:

Managing a diverse range of stakeholders, including senior leadership/stakeholders as customers

Growth mindset with a proactive approach to seeking opportunities for continuous improvement and efficiencies

Excellent written and verbal communication skills, with the ability to present complex information clearly and concisely to various audiences.

Understanding and experience with Data Science, including development and implementation of advanced analytics models, such as machine learning and statistical models

Knowledge of Palantir Foundry and its data integration and analytics capabilities

Understanding of how to present metrics and management information

Project management experience, with the ability to manage multiple projects and deadlines simultaneously

Some reasons we think you'll love it here:

AWE has wide range of benefits to suit you. These include:

9-day working fortnight - meaning you get every other Friday off work, in addition to 270 hours of annual leave.

Market leading contributory pension scheme (we will pay between 9% and 13% of your pensionable pay depending on your contributions).

Family friendly policies: Maternity Leave - 39 Weeks Full Pay and Paternity Leave - 4 Weeks Full Pay.

Opportunities for Professional Career Development including funding for annual membership of a relevant professional body.

Employee Assistance Programme and Occupational Health Services.

Life Assurance (4 x annual salary).

Discounts - access to savings on a wide range of everyday spending.

Special Leave Policy including paid time off for volunteering, public service (including reserve forces) and caring.

The 'Working at AWE' page on our website is where you can find full details in the 'AWE Benefits Guide'.

Important things you need to know:

You will need to obtain and maintain the necessary security clearance for the role. This will be funded by AWE. The nature of our work does mean you need to be a British Citizen who has been resident in the UK for the past 5 years in order to apply for SC clearance and 10 years for DV.

We want you to feel comfortable and able to shine during our recruitment process. Please let us know on your application form if you need any adjustments/accommodations during the process.

Our interviews typically take place over Teams and for most roles are a 1 stage process.

IF HYBRID POSSIBLE:

Hybrid working is available for this role on an informal, non-contractual basis. Typically 2 days onsite per week.

#LI-DS

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.