Risk Software Engineer

Algo Capital Group
London
11 months ago
Applications closed

Related Jobs

View all jobs

Lead Software Engineer (Machine Learning)

Senior Machine Learning Engineer

Junior / Graduate Data Scientist

Principal Data Scientist

Senior Data Scientist

Senior Data Scientist

Risk Software Engineer

A world-leading global systematic hedge fund and trading company are looking for a Software Engineer in risk.You will work on crafting technical solutions for Trading, Risk Analysts, and Risk Managers. You will gain knowledge across a wide variety of asset classes while implementing and monitoring risk data controls and delivering risk analytics. You will be integral to the interaction between Risk Managers, Risk Development, and other central teams.


Responsibilities:

  • Build tools and infrastructure to support the Risk Managers and Risk Analysts
  • Extend and optimize the operational framework used for monitoring and disseminating risk across the firm
  • Work closely with subject matter experts from other teams to develop and continuously improve data flow and quality
  • Work directly with Trading, developers and risk managers to monitor the health and utilization of risk systems to proactively detect/resolve data issues


Skills Required:

  • Bachelor’s degree in computer science or equivalent degree
  • Data Engineering experience.
  • Experience in development in (Python, Java, C++)
  • Machine learning, algo, strategy development or real-time trading development experience.


Outstanding benefits package on offer to support you both professionally and personally. These benefits include generous medical coverage, paid parental leave, and a variety of other benefits focused on providing the best employee experience. For more information please apply now.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.