Research Software Engineer

Plymouth
10 months ago
Applications closed

Related Jobs

View all jobs

Principal Computer Vision Scientist

Software Engineer, Applied Artificial Intelligence (AI)

Software Engineer, Applied Artificial Intelligence (AI)

Senior Simulation Engineer (Data Science)

Machine Learning Engineering Manager, Gen AI

Senior Machine Learning Engineer, Gen AI

Research Developer (Python & Control Systems) | MSc / PhD Level | Plymouth | £50,000 – £60,000

Smart code. Real-world impact. Deep tech R&D.
This is more than software dev — it’s applied research in action.

A cutting-edge software company in Plymouth is hiring a Research Developer to lead innovative projects at the intersection of Control Systems, Data Science, and Python-based development.

You’ll work on next-gen tech solving complex, real-world problems — across energy, automation, and decision systems.

What You’ll Be Doing:



Designing and developing intelligent algorithms in Python.

*

Applying control theory and data science to real-time systems.

*

Contributing to technical R&D across multiple funded innovation projects.

*

Translating academic models into scalable, maintainable code.

*

Working closely with engineers, data scientists, and research partners.

What You’ll Need:

*

MSc or PhD in Control Systems, Robotics, Data Science, Applied Maths, or similar.

*

Strong Python development skills — this is a coding-heavy role.

*

Solid understanding of applied mathematics, algorithms, and modelling.

*

Interest or experience in real-time systems, control loops, or signal processing.

*

Independent, research-driven mindset — with the ability to code ideas into life.

Nice to Have:

*

Experience in embedded systems, simulation, or AI/ML integration.

*

Familiarity with hardware-in-the-loop (HIL) or lab-based prototyping.

Why This Role Stands Out:

*

£50,000 – £60,000 salary depending on experience.

*

R&D-focused role — research meets real-world application.

*

Join a collaborative, low-ego team doing cutting-edge technical work.

*

Plymouth HQ with hybrid/flexible working available

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.