Research Engineer, ML, AI & Computer Vision (Hiring Immediately)

Meta
London
1 day ago
Create job alert

Meta Reality Labs Research (RL Research) brings together a world-class R&D team of researchers, developers, and engineers with the shared goal of developing AI and AR/VR technology across the spectrum. The Surreal Spatial AI group is seeking high-performing research scientists to build machine perception technology allowing AI agents and systems to perceive and understand the 3D world around them. The aim of this role is to develop, advance and integrate ML and computer vision models and SW systems for advanced, full-stack, real-time, Machine Perception and AI prototypes for egocentric devices such as Meta's Project Aria; Including 3D environment and object reconstruction, semantic understanding, estimation and understanding of user motion, actions and activities.


Research Engineer, ML, AI & Computer Vision Responsibilities

  • Implement and prototype advanced research systems and technologies spanning device and cloud, in the domain of AI and machine perception.
  • Collaborate with team members throughout the lifetime of a project, from early research through technology and experience prototyping.
  • Play a critical role in the definition and execution of system research roadmaps in partnership and cross functional organizations in computer vision, machine learning, graphics, sensors, optics and silicon.
  • Collaborate with cross-functional engineering and research teams from Reality Labs and FAIR in computer vision, machine learning, and graphics.

Minimum Qualifications

  • MSc or PhD degree in Computer Science, Computer Vision, Robotics or a related technical field.
  • Experience developing and designing Computer Vision and Perception for Robotics or smart device technologies and systems.
  • 5+ years of experience with a mastery of modern features in C++.
  • Experience working in a Unix environment.
  • Interpersonal experience: cross-group and cross-functional collaboration.

Preferred Qualifications

  • Industry experience working on projects such as: real-time SLAM and 3D reconstruction, scene understanding, robotics and agentic AI systems including autonomous driving.
  • Demonstrated software engineer experience via an internship, work experience, coding competitions, or widely used contributions in open source repositories (e.g., GitHub).
  • Broad experience with distributed systems, cloud services, or on-device algorithm development.
  • 3+ years of industry or postdoctoral experience as full-stack software engineer.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today-beyond the constraints of screens, the limits of distance, and even the rules of physics.


Equal Employment Opportunity

Meta is proud to be an Equal Employment Opportunity employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics. You may view our Equal Employment Opportunity notice here.

Meta is committed to providing reasonable accommodations for qualified individuals with disabilities and disabled veterans in our job application procedures. If you need assistance or an accommodation due to a disability, fill out the Accommodations request form.

#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Research Engineer | Generative Models | Protein Design | Deep Learning | Pytho[...]

ML/AI Software Engineer

Computer Vision Engineer

Senior AI | Machine Learning Engineer

Senior AI | Machine Learning Engineer

Computer Vision Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Over the last decade, the United Kingdom has firmly established itself as one of Europe’s most significant technology hubs. Thanks to a vibrant ecosystem of venture capital, government-backed initiatives, and a wealth of academic talent, the UK has become especially fertile ground for artificial intelligence (AI) innovation. This growth is not just evident in established tech giants—new start-ups are emerging every quarter with fresh ideas, ground-breaking technologies, and a drive to solve real-world problems. In this Q3 2025 Investment Tracker, we take a comprehensive look at the latest AI start-ups in the UK that have successfully secured funding. Beyond celebrating these companies’ milestones, we’ll explore how these recent investments translate into exciting new job opportunities for AI professionals. Whether you’re an experienced machine learning engineer, a data scientist, or simply hoping to break into the AI sector, this roundup will give you insights into the most in-demand roles, the skills you need to stand out, and how you can capitalise on the current AI hiring boom.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.