National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Research Engineer: Graph Machine Learning...

Atmanlabs
London
1 day ago
Create job alert

Research Engineer: Graph Machine Learning

Atman Labs, London

About Atman Labs
At Atman Labs we are building software to emulate proactive human expertise. Emulating human experts with deep knowledge and proactive assistance has largely been impossible to do via standalone Artificial Intelligence techniques. As an applied research and commercialization company we are deploying our products in a number of domains to demonstrate the value of our approach – from proactive shopping assistance, to personal teachers to healthcare concierges – and with this commercial focus advance our unique research that lies at the intersection of Reinforcement Learning rewards, Large Scale Knowledge Representation, and Predictive Models inspired by biological priors.

The Next Frontier of Machine Reasoning: Web-scale Knowledge Graph Exploration using Reinforcement Learning
Human experts can form and explore structured mental models in their heads to solve open-ended problems across different domains. Our research seeks to emulate this process through a novel combination of using reinforcement learning agents to perform exploration through a knowledge graph. Knowledge graphs allow us to represent structured information and the logical relations that govern it, unlocking the ability to build reinforcement learning strategies that can learn to solve complex, open-ended problems across web-scale and continuously-evolving domains.

You will be leading the research on knowledge representation and how it can serve to build AI systems capable of such complex reasoning. You will work on formulating research problems that explore how Reinforcement Learning algorithms can interact with large and complex knowledge graphs to reason over ambiguous tasks. To do this, you will develop knowledge graph machine learning techniques that will power several tools within our products. Knowledge graph representations (e.g. embeddings) are critical to representing web-scale, structured information in a compact format for a reinforcement learning agent, ensuring scalability. You will lead the efforts on training and validating graph embedding algorithms that capture multi-hop semantics within large web-scale knowledge graphs. Additionally, you will develop link prediction models that will enhance both the reasoning over the knowledge graph and recommendations.

About You
We are looking for ambitious and independent thinkers who have a deep desire to contribute and want to be part of the team that makes this a reality for humanity. In order to contribute, you should have all of these qualities:

  1. You have a PhD degree or equivalent industrial expertise in Graph Machine Learning and its applications.
  2. You have a deep understanding of the state-of-the-art in graph machine learning, with a focus on learning graph embeddings and link prediction problems.
  3. You have experience in training and tuning various graph ML algorithms including GNNs, Message Passing and Graph Transformers. Experience in building graph-based recommendation systems is a plus.
  4. You have 5+ years of programming experience in Python and have development experience with toolkits like PyTorch or Tensorflow and can deploy models with clean APIs. You are equally capable as a software engineer as you are in formulating novel research ideas and your code proves it.

    Moreover, in order to deeply fit within our culture, you should embody the following:

  5. You are capable of reasoning from first-principles, where there is no trodden path, as well as critically evaluate when existing ideas are worth considering.
  6. You are articulate and can present your ideas in writing, in person and in small groups educating audiences at all levels on the application of generative models.
  7. You have a high ‘faker’ detector in others, and can critically evaluate truth from fiction in your own work.
  8. Your colleagues consider you a highly positive personality, you amplify the energy of others rather than dampen the mood.
  9. Your intensity goes from 0-1000 when you become authentically interested in a topic.
  10. You not only have interests in systems engineering but are deeply curious about a range of interdisciplinary topics ranging from computational creativity, knowledge graphs, recommendations, web scale search, deep learning, large language models, computer vision, human consciousness, and the opportunity to build truly intelligent systems in software that are inspired by biology.
  11. Outside work you can show high creativity and intensity in your pursuits, you cannot easily be characterized in one discipline.
  12. You consider yourself an innovator, and original thinker, not a follower. You are looking for a way to contribute to the world and want to join our team to do so.

    You want to work in person in London. We’ll sponsor your visa.

    We have the ambition to usher the world towards co-existing alongside Benevolent AGI.
    Not only do we believe that our work is a credible approach to functionally emulate human reasoning but we believe that this mission can also allow us to conceive many commercial products that yield billions of dollars of commercial revenues that can support an ambitious R&D effort for years to come. We are building for a future where humans coexist alongside benevolent expert systems and seek to advance the field from the front. We are looking for ambitious and independent thinkers who have a deep desire to contribute and want to be part of the team that makes this a reality for humanity.

    Apply with a short message and a list of your projects, your life story in 5 sentences, your favorite book or artist, and your resume to .

    #J-18808-Ljbffr

Related Jobs

View all jobs

Research Engineer: Graph Machine Learning

Senior Machine Learning Engineer - Graph ML

Machine Learning R&D Engineer (KTP Associate)

Apply Now! Remote Machine Learning Compiler Engineer - Gensyn...

Senior Machine Learning Engineer...

Machine Learning Engineer...

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.