Research Associate (x2): Rare Events in Non-equilibrium Statistical Physics

University of Cambridge
Cambridge
7 months ago
Applications closed

Related Jobs

View all jobs

NLP / LLM Scientist - Applied AI ML Senior Associate - Machine Learning Centre of Excellence (Hiring Immediately)

Software Engineer

Teaching Assistant in Artificial Intelligence for Business (Marking only)

Bioinformatic Software Engineer

Data Scientist

Genomic Data Scientist

Two postdoctoral positions are available within the Soft Matter Group in the Department of Applied Mathematics and Theoretical Physics (DAMTP), part of the Faculty of Mathematics. This follows the award of a UKRI Grant to Investigators Mike Cates, Rob Jack, and Ronojoy Adhikari.

The Project is titled Nucleation and Extinction in Non-equilibrium Statistical Field Theories. It aims to create a non-equilibrium analogue to classical nucleation theory (CNT) for statistical field theories. In CNT the nucleation rate for a transition between phases is calculable from the free energy barrier corresponding to a critical nucleus. For non-equilibrium nucleation problems, such as phase transitions in an active fluid, no free energy exists and there is no general counterpart to CNT. Other such problems include the nucleation of an invading species in a new environment and the noise-induced transition between different flow patterns in a driven fluid. A closely related problem class is when noise leads to the extinction of an otherwise stable population, gene, or behavioural trait.

Progress in large deviation theory (LDT) has created tools, such as the quasi-potential, to address non-equilibrium rare events; but these are not yet fully developed for field-theoretic models. The project aims to address a wide range of such models, via a 'four-fold path' as follows. Step 1 is to identify a handful of reduced coordinates, that can track the progress of the rare event. Good coordinates may emerge from mechanistic insight and/or machine learning. Step 2 is to calculate and compare barrier crossing rates numerically, both in the reduced coordinate space and in a 'ground truth' basis for the full dynamics, refining the reduced description as needed. Step 3 is to find the reduced quasi-potential landscape, and Step 4 is to reconstruct the full noisy dynamics of the reduced model, thereby achieving a non-equilibrium counterpart of CNT for the given problem.

The appointees will develop the analytical and numerical tools needed to pursue the four-fold path and use them to explore rare events associated with phase transitions and/or extinctions in a variety of stochastic field theories. The successful applicants will need strong familiarity with statistical field theory, at least some acquaintance with large deviation theory, or vice versa, and the ability to combine analytical and numerical skills to solve complex problems.

Duties may include developing and conducting research objectives, proposals, and projects. The role holders will be expected to plan and manage their own research and administration, with guidance if required. They may be called upon to prepare proposals and applications to external bodies for funding. They must be able to communicate material of a technical nature and build internal and external contacts. They may be asked to assist in the supervision of student projects and in the development of student research skills, and provide instruction or plan/deliver seminars relating to the research area.

Fixed-term: The funds for these posts are available for 24 months in the first instance.

We welcome applications from candidates able to take up their positionon or before 1 October 2025. A start date as early asMarch 2025may be possible by mutual agreement.

The project is structured into the following four work packages. WP1: New Numerical Tools; WP2: Nucleation in Active Matter; WP3: Spatial Models; WP4: Barrier Crossing in Fluids. We are recruiting primarily to WP1 and WP2 in this call. Contract extension beyond 24 months is possible for appointees who also have skills relevant to the remaining WPs.

The University of Cambridge values diversity and is committed to equality of opportunity. The Department would particularly welcome applications from women, since women are, and have historically been, underrepresented on our research staff.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Over the last decade, the United Kingdom has firmly established itself as one of Europe’s most significant technology hubs. Thanks to a vibrant ecosystem of venture capital, government-backed initiatives, and a wealth of academic talent, the UK has become especially fertile ground for artificial intelligence (AI) innovation. This growth is not just evident in established tech giants—new start-ups are emerging every quarter with fresh ideas, ground-breaking technologies, and a drive to solve real-world problems. In this Q3 2025 Investment Tracker, we take a comprehensive look at the latest AI start-ups in the UK that have successfully secured funding. Beyond celebrating these companies’ milestones, we’ll explore how these recent investments translate into exciting new job opportunities for AI professionals. Whether you’re an experienced machine learning engineer, a data scientist, or simply hoping to break into the AI sector, this roundup will give you insights into the most in-demand roles, the skills you need to stand out, and how you can capitalise on the current AI hiring boom.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.