Research Associate in Pure Mathematics and Mathematical Statistics (Fixed Term)

University of Cambridge
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Research Associate in Computational Biology and Machine Learning

Research Associate / Senior Research Associate in Computer Vision and Machine Learning (Medical Imaging)

Research Assistant/Associate in Cardiac Computational Modelling via Machine Learning and Biomechanics Simulations

Research Associate - Machine Learning (Environmental Technologies)

Research Associate - Machine Learning (Environmental Technologies)

Research Associate - Machine Learning (Environmental Technologies)

Applications are invited for the position of Research Associate in the Department of Pure Mathematics and Mathematical Statistics. The successful applicant will join the ERC-funded team of Prof. Richard Nickl and work in the project area `Statistical aspects of non-linear inverse problems', which broadly addresses mathematical and foundational challenges in contemporary data science and the theory of statistical algorithms.

Duties include undertaking your own programme of research and assisting with ongoing research programmes, using databases, modelling, computation as appropriate; writing up results for publication; and presenting your work to colleagues at conferences or steering groups, both internally and externally. You may also be asked to assist in the supervision of student projects, and/or to provide supervision/instruction to classes or small groups of students.

The successful candidate will have completed (or nearly completed) a Ph.D. degree in mathematics and have relevant background knowledge in mathematical statistics and probability theory. Further knowledge of modern techniques in analysis and partial differential equations (PDEs) will strengthen any application but is not strictly necessary. Previous relevant research experience at this level is desirable but not essential.

Fixed-term: The funds for this post are available for 2 years in the first instance, with a possible extension to 3 years.

The start date is 1 October 2025 (or to be negotiated).

Interviews will be held in the first two weeks of January 2025.

Informal enquiries can be made by contacting Prof Richard Nickl:

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society. We particularly welcome applications from women and/or candidates from a BAME background for this vacancy as they are currently under-represented at this level in our Department.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.