Reinforcement Learning Scientist

Stealth AI Startup
Sheffield
1 year ago
Applications closed

Related Jobs

View all jobs

Applied AI and Machine Learning Scientist - Senior Associate

Applied Data Scientist

Senior Data Scientist

Data Scientist (Full Stack)

Data Scientist Lead

AI Engineer / Machine Learning Engineer

Join Us: Research Scientist - Online Reinforcement Learning (RL) at an Agentic AI Start-Up!


Are you ready to revolutionize the future of intelligent agents? We're anAgentic AI start-upon a mission to build the next generation of autonomous systems capable of real-time learning, adaptation, and decision-making. If you’re passionate aboutOnline Reinforcement Learningand want to shape the frontier of AI, we’d love to hear from you!


About Us


We are a well-funded, ambitious, fast-growing start-up buildingAI agentsthat can learn, adapt, and thrive in dynamic, interactive environments. Our vision is to empower businesses and individuals with cutting-edge, agentic AI solutions that redefine how machines interact with the world.


The Role


As aResearch Scientist in Online Reinforcement Learning, you will:

  • Innovate: Develop groundbreaking algorithms for real-time learning and decision-making in dynamic, multi-agent systems.
  • Collaborate: Work closely with a team of researchers and engineers to create scalable solutions that deliver real-world impact.
  • Experiment: Lead experimental projects to address challenges like stability, data efficiency, and exploration in online RL.
  • Productize AI: Translate research insights into deployable AI systems for robotics, gaming, autonomous platforms, and more.
  • Share Knowledge: Publish research at top-tier conferences (e.g., NeurIPS, ICML, ICLR) and contribute to the global AI community.


What You’ll Bring


  • PhD or equivalentin Machine Learning, Reinforcement Learning, Computer Science, or related fields.
  • Expertisein RL algorithms (e.g., PPO, A3C, DQN) and their application to dynamic environments.
  • Proven Research Impact: Strong publication record in top conferences/journals and a passion for advancing AI.
  • Technical Skills: Proficiency in Python, RL frameworks (PyTorch/TensorFlow), and cloud-based ML tools.
  • Start-Up Mindset: A proactive, problem-solving attitude and a love for tackling challenges in fast-paced environments.
  • Visionary Thinking: A deep interest in agentic AI and its potential to transform industries.


Why Join Us?


  • Impactful Work: Shape the future of agentic AI in industries like autonomous vehicles, robotics, and intelligent systems.
  • Ownership: Be part of a start-up where your ideas and contributions directly drive our success.
  • Cutting-Edge Tech: Access to the latest tools, resources, and computational infrastructure.
  • Growth Opportunities: Thrive in a collaborative, growth-focused culture that values curiosity and innovation.
  • Start-Up Perks: Competitive salary, meaningful equity, flexible work options, and a chance to grow with us.


Our Mission


At our core, we’re driven by the belief that intelligent agents can reshape the way we live, work, and explore. Join us on our journey to build a future where AI systems are not just tools but partners in discovery and creation.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.