Quantitative Developer, Systematic Equities

Millennium Management LLC
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Science Lead

2026 Summer Internship, Engineering & Data Science (London)

Data Scientist

Data Scientist

Research Fellow in Data Science

Senior Data Scientist (Applied AI)

Job Description: Quantitative Developer, Systematic Equities

Please send resume submissions to and referenceREQ-19460in the subject line.

Millennium is a top tier global hedge fund with a strong commitment to leveraging market innovations in technology and data to deliver high-quality returns.

A small, collaborative, and entrepreneurial systematic investment team is seeking an experienced developer to join in building critical trading infrastructure. This opportunity provides a dynamic and fast-paced environment with excellent opportunities for career growth.

Location: London

Principal Responsibilities

  1. Partner closely with the Portfolio Manager to develop data engineering and prediction tools primarily for the systematic trading of equities.
  2. Develop software engineering solutions for quantitative research and trading
    • Assist in designing, coding, and maintaining tools for the systematic trading infrastructure of the team.
    • Build and maintain robust data pipelines and databases that ingest and transform large amounts of data.
    • Develop processes that validate the integrity of the data.
  3. Implementation and operation of systems to enable quantitative research (i.e., large scale computation and serialization frameworks)
    • Live operation of such systems, including monitoring and pro-active detection of potential problems and intervention.
  4. Stay current on state-of-the-art technologies and tools including technical libraries, computing environments, and academic research.
  5. Collaborate with the PM and the trading group in a transparent environment, engaging with the whole investment process.

Preferred Technical Skills

  1. Master’s or PhD in Computer Science, Physics, Engineering, Statistics, Applied Mathematics, or related technical field appropriate to a computational background.
  2. Expert in C++.
  3. Advanced programming skills in Python.
  4. Strong Linux-based development.

Preferred Experience

  1. Extremely strong computer science or engineering background with 3+ years of experience.
  2. Approx. 3-4 years of professional experience in a computer science/computational role.
  3. Experience working in a technical environment with DevOps functions (Google Cloud, Airflow, InfluxDB, Grafana).
  4. Design and implementation of front-office systems for quant trading.

Highly Valued Relevant Experience

  1. Knowledge of machine learning and statistical techniques and related libraries.
  2. Experience as a quantitative developer supporting an intraday (or faster) system.
  3. Experience with the development practices of large tech (Google/Meta, etc.) or finance firms.
  4. Experience with financial data.

Target Start Date: As soon as possible

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.