Quantitative Analyst

Ludgate Hill
9 months ago
Applications closed

Related Jobs

View all jobs

Baseball Analyst / Data Scientist

Senior Data Science Analyst - Shipping

Senior Football Data Scientist | Manchester United FC

Data Scientist

Data Scientist

Data Scientist

Forvis Mazars is an engine for rapid and consistent career progression, offering individually designed career paths that help you pursue your interests, match your changing needs, and explore your true potential. We work with diverse, prestigious clients across a range of sectors and geographies, giving you the opportunity to constantly update and grow your skills for lifelong professional development.

Due to the continued growth of our FS Risk Consulting Department, we are looking for a Quantitative Analyst to join the Quantitative Finance Team based in London. You will mainly interact with banks but also insurance companies, large corporates and service companies on a variety of projects.

About the role

Contribute in small and large-sized multidisciplinary engagement teams delivering quantitative finance projects for clients:

Cross-asset derivative pricing including valuation adjustments (XVA). Calibration of models using best industry practices

Model validation for small to large size clients, for quantitative risk management models such as (PD/LGD, VaR, Expected Shortfall, EPE/PFE)

Implementation review of accounting standards such as FRTB, IFRS9, CECL

Development of internal pricing libraries and tools (e.g. C/ECL, stress testing)

Oversee summer internship projects

Support business development by preparing client proposals

Help with administrative tasks (such as training and recruitment)

What are we looking for?

Advanced knowledge in derivative pricing, quantitative risk management (covering credit, market and counterparty risk), stochastic calculus, modelling, statistics and probabilities

Strong significant experience either in derivative pricing, credit (PD and LGD modelling) and market (VaR, Expected Shortfall, FRTB) risk modelling

Strong experience in either of Python, R or C++

Ability to work in a team

Desired experience/skills: model validation and machine learning

About Forvis Mazars

Forvis Mazars is a leading global professional services network. The network operates under a single brand worldwide, with just two members: Forvis Mazars LLP in the United States and Forvis Mazars Group SC, an internationally integrated partnership operating in over 100 countries and territories.

Both member firms share a commitment to providing an unmatched client experience, delivering audit & assurance, tax and advisory services around the world. Together, our strategic vision strives to move our clients, people, industry and communities forward.  Through our reach and areas of expertise, we help organisations respond to emerging sustainability issues in the global marketplace including human rights, climate change, environmental impacts and culture.

We are one diverse, multicultural, multi-generational team with a huge sense of connection and belonging. This is a place where you can take ownership of your career, get involved, believe in yourself and put your ideas into action.

At Forvis Mazars, we empower our people and celebrate individuality. We thrive on teamwork and are agile. We have bold foresight and give people the freedom to make a personal contribution to our shared purpose. We support one another to deliver quality, create change and have a deeper understanding, to help make an impact so that everyone can reach their full potential.

Being inclusive is core to our culture at Forvis Mazars; we want to ensure everyone, whether in the recruitment process or beyond is fully supported to be their unique self. To read more about our approach .

Our aim is to make the recruitment process as accessible and inclusive as possible - please contact us to discuss any changes you may require so we can work with you to support you throughout your application.

Visit to learn more

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.