Quant Researcher

Selby Jennings
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Science Quant Python - Fintech

Applied AIML Lead- Python & Data Science Engineering

I am working with an established pod at a $15 Bn+ hedge fund inLondonwho are looking for a mid-frequency Quantitative Researcher to work on the research, development and execution of theirfutures strategies.

The PM has been in his seat for 2 years, with the pod running for 5+ years. You would be working on fully systematicalpha strategies within futures, with holding period of intraday up to a week. This can be across all liquid asset classes e.g. FX futures, Rates futures, Commodities futures, Fixed Income futures.

Key Responsibilities:

  • Alpha Strategy Development:Design, test, and implement quantitative alpha strategies focusing on futures markets, using advanced statistical and machine learning techniques.
  • Data Analysis:Leverage large datasets (historical price data, macroeconomic indicators, sentiment data, etc.) to identify patterns, correlations, and predictive signals that can be incorporated into models.
  • Modeling & Backtesting:Develop quantitative models and utilise backtesting frameworks to assess the effectiveness and robustness of strategies under various market conditions.
  • Research & Innovation:Stay up to date with the latest developments in financial markets, quantitative research techniques, and algorithmic trading to continuously innovate and improve alpha generation capabilities.
  • Collaboration:Work closely with the PM to ensure smooth implementation of models and strategies, providing insights and analysis to optimize trading decisions.
  • Performance Evaluation:Continuously monitor and evaluate the performance of live strategies, optimizing parameters and making necessary adjustments to improve performance.

Qualifications:

  • Education:Advanced degree (Master's or PhD) in a quantitative field such as Mathematics, Physics, Engineering, Computer Science, Finance, or Statistics.
  • Experience:
    • At least 2-6 years of experience in quantitative research, with a focus on alpha strategy development and futures markets.
    • Experience with futures products (e.g., equity index futures, commodity futures, fixed-income futures) and related market structures.
    • Proficiency in statistical and machine learning techniques such as regression analysis, time series modeling, Monte Carlo simulations, and optimization.
    • Strong coding skills in Python and similar programming languages; experience with backtesting platforms (e.g., QuantConnect, Backtrader, etc.) is a plus.
  • Skills:
    • Strong quantitative and analytical skills, with the ability to extract insights from complex datasets.
    • Proficiency in data manipulation, statistical analysis, and visualization tools (e.g., Pandas, NumPy, SciPy, Matplotlib).
    • Strong understanding of financial markets, trading mechanics, and futures contracts.
    • Excellent problem-solving and critical thinking abilities.
    • Effective communication skills, with the ability to present research findings and strategies clearly to non-technical stakeholders.

Q2xhcmEuT0RvaGVydHkuMTE4OTMuZWZpQHNlbGJ5bG9uZG9uLmFwbGl0cmFrLmNvbQ.gif

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.