Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quality Engineer Lead

Alltech Consulting Services
Great Malvern
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer (Data Science Team)

Lead DataOps Engineer - SC, DataOps, Cloud

Lead DataOps Engineer - SC, DataOps, Cloud

AI Engineer / Machine Learning Engineer

Lead Machine Learning Engineer

Staff/Lead Machine Learning Engineer (CV / Research)

Job Description

We are in need of QA Lead.

Overview
We are seeking a highly skilled and motivated Quality Engineer with expertise in AWS, artificial intelligence (AI), resiliency, and performance testing. The ideal candidate will possess a strong background in quality assurance, a passion for cutting-edge technology, and the ability to ensure our systems are robust, resilient, and perform optimally under all conditions. This role will require close collaboration with development, operations, and product teams to deliver high-quality solutions that meet our business objectives.

Key Responsibilities:
* Quality Assurance and Testing
* Develop and execute comprehensive test plans, test cases, and test scripts for AWS-based applications and AI-driven solutions.
* Ensure all functional, integration, system, and regression testing is completed thoroughly and efficiently.
* Implement automated testing frameworks and tools to improve testing efficiency and coverage.
* Collaborate with developers to identify, reproduce, and resolve defects.
* Performance Testing
* Design and implement performance testing strategies to validate the scalability, reliability, and performance of our applications.
* Use performance testing tools (e.g., JMeter, LoadRunner, Gatling) to simulate user load and identify performance bottlenecks.
* Analyze performance test results and provide detailed feedback and recommendations for improvement.
* Work with development and operations teams to optimize application performance and ensure it meets our standards and SLAs.
* Resiliency Testing
* Develop and execute resiliency testing plans to ensure our applications can withstand and recover from unexpected failures and disruptions.
* Implement chaos engineering principles and tools (e.g., Chaos Monkey, Gremlin) to test the robustness of our systems.
* Collaborate with development and operations teams to identify vulnerabilities and implement strategies to improve system resiliency.
* Artificial Intelligence
* Develop and execute testing strategies for AI and machine learning models to ensure their accuracy, reliability, and robustness.
* Collaborate with data scientists and AI engineers to validate model performance and ensure they meet business requirements.
* Implement monitoring and validation techniques to ensure AI models continue to perform well in production environments.
* Continuous Improvement
* Continuously evaluate and improve our testing processes, tools, and methodologies to ensure high standards of quality and efficiency.
* Stay updated with industry trends, best practices, and emerging technologies in quality engineering, AI, and cloud computing.
* Provide mentorship and guidance to junior quality engineers and contribute to the overall growth and development of the QA team.

Qualifications:
* Bachelor’s degree in Computer Science, Engineering, or a related field.
* At least 5 years of experience in quality assurance and performance testing.
* Strong expertise in AWS services and cloud-based applications.
* Experience with AI and machine learning testing.
* Proficiency in automated testing tools and frameworks (e.g., Selenium, JUnit, TestNG).
* Experience with performance testing tools (e.g., JMeter, LoadRunner, Gatling).
* Understanding of chaos engineering principles and tools (e.g., Chaos Monkey, Gremlin).
* Excellent analytical, problem-solving, and communication skills.
* Ability to work collaboratively in a fast-paced, agile environment.
* Strong attention to detail and commitment to quality.

Preferred Skills:
* Advanced certifications in AWS and related technologies.
* Experience with AI frameworks and libraries (e.g., TensorFlow, PyTorch).
* Knowledge of containerization and orchestration tools (e.g., Docker, Kubernetes).
* Familiarity with CI/CD pipelines and tools (e.g., Jenkins, GitLab CI).
* Experience with monitoring and logging tools (e.g., Prometheus, Grafana, ELK stack).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.