Quality Engineer Lead

Alltech Consulting Services
Great Malvern
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Software Engineer - MLOps Platform

Lead Software Engineer (Machine Learning)

Senior DataOps Engineer

Lead Machine Learning Engineer, Gen AI

Lead Machine Learning Engineer, AI

Machine Learning Engineer

Job Description

We are in need of QA Lead.

Overview
We are seeking a highly skilled and motivated Quality Engineer with expertise in AWS, artificial intelligence (AI), resiliency, and performance testing. The ideal candidate will possess a strong background in quality assurance, a passion for cutting-edge technology, and the ability to ensure our systems are robust, resilient, and perform optimally under all conditions. This role will require close collaboration with development, operations, and product teams to deliver high-quality solutions that meet our business objectives.

Key Responsibilities:
* Quality Assurance and Testing
* Develop and execute comprehensive test plans, test cases, and test scripts for AWS-based applications and AI-driven solutions.
* Ensure all functional, integration, system, and regression testing is completed thoroughly and efficiently.
* Implement automated testing frameworks and tools to improve testing efficiency and coverage.
* Collaborate with developers to identify, reproduce, and resolve defects.
* Performance Testing
* Design and implement performance testing strategies to validate the scalability, reliability, and performance of our applications.
* Use performance testing tools (e.g., JMeter, LoadRunner, Gatling) to simulate user load and identify performance bottlenecks.
* Analyze performance test results and provide detailed feedback and recommendations for improvement.
* Work with development and operations teams to optimize application performance and ensure it meets our standards and SLAs.
* Resiliency Testing
* Develop and execute resiliency testing plans to ensure our applications can withstand and recover from unexpected failures and disruptions.
* Implement chaos engineering principles and tools (e.g., Chaos Monkey, Gremlin) to test the robustness of our systems.
* Collaborate with development and operations teams to identify vulnerabilities and implement strategies to improve system resiliency.
* Artificial Intelligence
* Develop and execute testing strategies for AI and machine learning models to ensure their accuracy, reliability, and robustness.
* Collaborate with data scientists and AI engineers to validate model performance and ensure they meet business requirements.
* Implement monitoring and validation techniques to ensure AI models continue to perform well in production environments.
* Continuous Improvement
* Continuously evaluate and improve our testing processes, tools, and methodologies to ensure high standards of quality and efficiency.
* Stay updated with industry trends, best practices, and emerging technologies in quality engineering, AI, and cloud computing.
* Provide mentorship and guidance to junior quality engineers and contribute to the overall growth and development of the QA team.

Qualifications:
* Bachelor’s degree in Computer Science, Engineering, or a related field.
* At least 5 years of experience in quality assurance and performance testing.
* Strong expertise in AWS services and cloud-based applications.
* Experience with AI and machine learning testing.
* Proficiency in automated testing tools and frameworks (e.g., Selenium, JUnit, TestNG).
* Experience with performance testing tools (e.g., JMeter, LoadRunner, Gatling).
* Understanding of chaos engineering principles and tools (e.g., Chaos Monkey, Gremlin).
* Excellent analytical, problem-solving, and communication skills.
* Ability to work collaboratively in a fast-paced, agile environment.
* Strong attention to detail and commitment to quality.

Preferred Skills:
* Advanced certifications in AWS and related technologies.
* Experience with AI frameworks and libraries (e.g., TensorFlow, PyTorch).
* Knowledge of containerization and orchestration tools (e.g., Docker, Kubernetes).
* Familiarity with CI/CD pipelines and tools (e.g., Jenkins, GitLab CI).
* Experience with monitoring and logging tools (e.g., Prometheus, Grafana, ELK stack).

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.